Isolation of Peroxisomes from Mouse Brain Using a Continuous Nycodenz Gradient: A Comparison to the Isolation of Liver and Kidney Peroxisomes. 2017

Miriam J Schönenberger, and Werner J Kovacs
Institute of Physiology, University of Zurich, Zurich, Switzerland.

In the central nervous system (CNS) peroxisomes are present in all cell types, namely neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells. Brain peroxisomes are smaller in size compared to peroxisomes from other tissues and are therefore referred to as microperoxisomes. We have established a purification procedure to isolate highly purified peroxisomes from the central nervous system that are well separated from the endoplasmic reticulum and mitochondria and are free of myelin contamination. The major difficulty in purification of brain peroxisomes compared to peroxisomes from liver or kidney is the presence of large amounts of myelin in the CNS, which results in contamination of the subcellular fractions. Hence, the crucial step of the isolation procedure is the elimination of myelin by the use of a sucrose gradient, since without the elimination of myelin no significant enrichment of purified peroxisomes can be achieved. Another difficulty is that in brain tissue the abundance of peroxisomes decreases significantly during postnatal development. We provide a detailed protocol for the isolation of peroxisomes from mouse central nervous system as well as a protocol for the isolation of peroxisomes from the liver and kidney using a continuous Nycodenz gradient.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004950 Esterases Any member of the class of enzymes that catalyze the cleavage of an ester bond and result in the addition of water to the resulting molecules. Esterase
D005969 Glutamate Dehydrogenase An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2. Dehydrogenase, Glutamate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Miriam J Schönenberger, and Werner J Kovacs
June 2007, Proteomics,
Miriam J Schönenberger, and Werner J Kovacs
January 2017, Methods in molecular biology (Clifton, N.J.),
Miriam J Schönenberger, and Werner J Kovacs
October 1981, Journal of biochemical and biophysical methods,
Miriam J Schönenberger, and Werner J Kovacs
November 1975, Biochimica et biophysica acta,
Miriam J Schönenberger, and Werner J Kovacs
July 1995, Journal of immunological methods,
Miriam J Schönenberger, and Werner J Kovacs
April 1991, Journal of neurochemistry,
Miriam J Schönenberger, and Werner J Kovacs
November 2007, Proteome science,
Copied contents to your clipboard!