Polyprotein processing in picornavirus replication. 1988

H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
Department of Microbiology, School of Medicine, State University of New York, Stony Brook 11794.

The primary translation product of the picornavirus genome is a single large protein which is processed to the mature viral polypeptides by progressive, co- and post-translational cleavages. Replication of the picornaviruses is thus entirely dependent upon the proteolysis of viral precursor proteins. In poliovirus, two virus-encoded proteinases have been identified that catalyze all but the final cleavage of the viral polyprotein. The final processing event, maturation of the virion polypeptide VPO, appears to occur by an unusual autocatalytic serine proteinase-like mechanism. Proteolytic processing of viral precursor proteins is basically similar in all picornaviruses, but recently it has become clear that there are also important differences between these viruses. Understanding of the processing events in picornavirus replication may ultimately lead to the discovery of specific inhibitors of the viral enzymes that could prove clinically useful as anti-viral agents.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010849 Picornaviridae A family of small RNA viruses comprising some important pathogens of humans and animals. Transmission usually occurs mechanically. There are nine genera: APHTHOVIRUS; CARDIOVIRUS; ENTEROVIRUS; ERBOVIRUS; HEPATOVIRUS; KOBUVIRUS; PARECHOVIRUS; RHINOVIRUS; and TESCHOVIRUS. Avihepatovirus,Pasivirus,Picornaviruses,Rosavirus,Sapelovirus,Senecavirus,Sicinivirus,Tremovirus,Avihepatoviruses,Pasiviruses,Rosaviruses,Sapeloviruses,Senecaviruses,Siciniviruses,Tremoviruses
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
April 2007, The Journal of general virology,
H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
January 1987, Proceedings of the National Academy of Sciences of the United States of America,
H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
January 1994, Archives of virology. Supplementum,
H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
November 2008, Medicinal research reviews,
H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
February 1999, Trends in microbiology,
H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
January 2006, Advances in experimental medicine and biology,
H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
July 2004, Nihon rinsho. Japanese journal of clinical medicine,
H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
January 1990, Annual review of microbiology,
H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
May 2023, Journal of virology,
H G Kräusslich, and M J Nicklin, and C K Lee, and E Wimmer
August 2016, Current opinion in virology,
Copied contents to your clipboard!