Exogenous oxidants initiate hydrolysis of endothelial cell inositol phospholipids. 1988

D M Shasby, and M Yorek, and S S Shasby
Department of Internal Medicine, University of Iowa Hospitals, Iowa City 52242.

Oxidants released from inflammatory cells contribute to the pathogenesis of acute inflammatory edema in many models. Chemically produced oxidants can reversibly alter the barrier properties of cultured endothelial and epithelial monolayers. This report examines the effects of nonlytic doses of H2O2 on endothelial cell lipids. H2O2 oxidized omega-6 fatty acids in the endothelial cells and initiated hydrolysis of endothelial cell phospholipids. When endothelial cells were exposed to peroxidized linoleic acid, it caused lysis of the cells at doses 1,000-fold lower than effective doses of H2O2. The phospholipid hydrolysis was directed primarily at the inositol phospholipids and consisted of both A and C type phospholipase activity. The phospholipase A hydrolysis resulted in increases in endothelial cell free fatty acids and lysophosphatidylinositol. The phospholipase C hydrolysis resulted in increases in diglycerides, phosphatidic acid, and inositol polyphosphate levels. The phospholipase C hydrolysis of phosphatidylinositol is known to activate protein kinase C in most cells. Stimulation of protein kinase C with phorbol-12,13-dibutyrate increased albumin flux across endothelial monolayers and altered endothelial cell shape, similar to effects of oxidants. These data are consistent with the hypothesis that oxidant-initiated hydrolysis of endothelial cell inositol phospholipids contributes to oxidant-mediated reversible changes in endothelial monolayer barrier function.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

D M Shasby, and M Yorek, and S S Shasby
December 1988, The American journal of physiology,
D M Shasby, and M Yorek, and S S Shasby
April 1961, The Biochemical journal,
D M Shasby, and M Yorek, and S S Shasby
February 1985, European journal of pharmacology,
D M Shasby, and M Yorek, and S S Shasby
June 1987, Biochemical Society transactions,
D M Shasby, and M Yorek, and S S Shasby
January 1993, Progress in clinical and biological research,
D M Shasby, and M Yorek, and S S Shasby
March 1985, Biochemical and biophysical research communications,
D M Shasby, and M Yorek, and S S Shasby
May 1986, Naunyn-Schmiedeberg's archives of pharmacology,
D M Shasby, and M Yorek, and S S Shasby
December 1998, Neurochemical research,
D M Shasby, and M Yorek, and S S Shasby
January 1992, Neuroscience letters,
Copied contents to your clipboard!