Defects in the cytochrome bc1 complex in mitochondrial diseases. 1988

N G Kennaway
Department of Medical Genetics, Oregon Health Sciences University, Portland 97201.

The clinical and biochemical findings of 14 patients with an isolated defect of the bc1 complex have been summarized. The heterogeneity of this group of disorders reflects the severity and tissue specific expression of the defect and the complexity of this multisubunit protein with components that are coded on both nuclear and mitochondrial DNA. The data on several patients with a combined defect of cytochrome oxidase and the bc1 complex or with multiple respiratory chain defects have also been presented and discussed in relation to our knowledge of the biosynthesis and assembly of the respiratory chain complexes. The severity of the defect in vivo is illustrated in one patient with isolated complex III deficiency by measurement of O2 consumption and CO2 production following exercise, or by 31P-NMR. The latter also provides a means by which response to therapy can be followed.

UI MeSH Term Description Entries
D008661 Metabolism, Inborn Errors Errors in metabolic processes resulting from inborn genetic mutations that are inherited or acquired in utero. Inborn Errors of Metabolism,Metabolism Errors, Inborn,Error, Inborn Metabolism,Errors Metabolism, Inborn,Errors Metabolisms, Inborn,Errors, Inborn Metabolism,Inborn Errors Metabolism,Inborn Errors Metabolisms,Inborn Metabolism Error,Inborn Metabolism Errors,Metabolism Error, Inborn,Metabolism Inborn Error,Metabolism Inborn Errors,Metabolisms, Inborn Errors
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009135 Muscular Diseases Acquired, familial, and congenital disorders of SKELETAL MUSCLE and SMOOTH MUSCLE. Muscle Disorders,Myopathies,Myopathic Conditions,Muscle Disorder,Muscular Disease,Myopathic Condition,Myopathy
D009202 Cardiomyopathies A group of diseases in which the dominant feature is the involvement of the CARDIAC MUSCLE itself. Cardiomyopathies are classified according to their predominant pathophysiological features (DILATED CARDIOMYOPATHY; HYPERTROPHIC CARDIOMYOPATHY; RESTRICTIVE CARDIOMYOPATHY) or their etiological/pathological factors (CARDIOMYOPATHY, ALCOHOLIC; ENDOCARDIAL FIBROELASTOSIS). Myocardial Disease,Myocardial Diseases,Myocardial Diseases, Primary,Myocardial Diseases, Secondary,Myocardiopathies,Primary Myocardial Disease,Cardiomyopathies, Primary,Cardiomyopathies, Secondary,Primary Myocardial Diseases,Secondary Myocardial Diseases,Cardiomyopathy,Cardiomyopathy, Primary,Cardiomyopathy, Secondary,Disease, Myocardial,Disease, Primary Myocardial,Disease, Secondary Myocardial,Diseases, Myocardial,Diseases, Primary Myocardial,Diseases, Secondary Myocardial,Myocardial Disease, Primary,Myocardial Disease, Secondary,Myocardiopathy,Primary Cardiomyopathies,Primary Cardiomyopathy,Secondary Cardiomyopathies,Secondary Cardiomyopathy,Secondary Myocardial Disease
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014450 Electron Transport Complex III A multisubunit enzyme complex that contains CYTOCHROME B GROUP; CYTOCHROME C1; and iron-sulfur centers. It catalyzes the oxidation of ubiquinol to UBIQUINONE, and transfers the electrons to CYTOCHROME C. In MITOCHONDRIA the redox reaction is coupled to the transport of PROTONS across the inner mitochondrial membrane. Complex III,Cytochrome bc1 Complex,Ubiquinol-Cytochrome-c Reductase,Coenzyme Q-Cytochrome-c Reductase,Coenzyme QH2-Cytochrome-c Reductase,Core I Protein, UCCreductase,Core I Protein, Ubiquinol-Cytochrome c Reductase,Core II Protein, UCCreductase,Core II Protein, Ubiquinol-Cytochrome c Reductase,Cytochrome b-c2 Oxidoreductase,Cytochrome bc1,Dihydroubiquinone-Cytochrome-c Reductase,QH(2)-Cytochrome-c Reductase,QH(2)-Ferricytochrome-c Oxidoreductase,Ubihydroquinone-Cytochrome-c Reductase,Ubiquinol-Cytochrome c Reductase,Ubiquinone-Cytochrome b-c2 Oxidoreductase,Coenzyme Q Cytochrome c Reductase,Coenzyme QH2 Cytochrome c Reductase,Core I Protein, Ubiquinol Cytochrome c Reductase,Core II Protein, Ubiquinol Cytochrome c Reductase,Cytochrome b c2 Oxidoreductase,Dihydroubiquinone Cytochrome c Reductase,Reductase, Ubiquinol-Cytochrome c,Ubihydroquinone Cytochrome c Reductase,Ubiquinol Cytochrome c Reductase,Ubiquinone Cytochrome b c2 Oxidoreductase

Related Publications

N G Kennaway
January 2000, Sub-cellular biochemistry,
N G Kennaway
June 1999, Journal of bioenergetics and biomembranes,
N G Kennaway
June 1998, Biochimica et biophysica acta,
N G Kennaway
June 1999, Journal of bioenergetics and biomembranes,
N G Kennaway
June 1980, Biochemical Society transactions,
N G Kennaway
August 2008, The Journal of biological chemistry,
N G Kennaway
April 2010, The Journal of biological chemistry,
Copied contents to your clipboard!