DNA sequence specificity of 4,5',8-trimethylpsoralen cross-linking. Effect of neighboring bases on cross-linking the 5'-TA dinucleotide. 1988

F Esposito, and R G Brankamp, and R R Sinden
Department of Biochemistry and Molecular Biology, University of Cincinnati College of Medicine, Ohio 45267-0522.

The DNA sequence specificity for 4,5',8-trimethylpsoralen cross-linking of DNA has been examined using chemically synthesized DNA fragments containing all possible pyrimidine and purine base pair combinations. We confirm our previous findings that the 5'-TA dinucleotide represents a preferred cross-link site. Other dinucleotides that form cross-links are 5'-AT much greater than 5'-TG greater than 5'-GT. Although 5'-TA represents a preferred cross-link site, the rate of cross-linking can vary 3-4-fold depending on the base composition flanking the cross-linkable 5'-TA dinucleotide. In some cases, changes in DNA sequence 3 base pairs (bp) away from 5'-TA resulted in significant changes in the rate of cross-linking. We also see evidence for a long-range sequence context effect on the rate of cross-linking. A 30-bp fragment cross-linked at a relative rate of 2.9 compared to the rate of cross-linking of a 20-bp fragment when cloned contiguously in plasmid DNA. When cross-linked as separate fragments, the 30-bp fragment cross-linked at a relative rate of 1.9 compared to the 20-bp fragment. The results suggest that the reactivity of DNA to psoralens, and perhaps other intercalating drugs, is dependent on the dinucleotide sequence, the bases flanking the dinucleotide, and the long-range sequence context of the DNA.

UI MeSH Term Description Entries
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011564 Furocoumarins Polycyclic compounds consisting of a furan ring fused with coumarin. They commonly occur in PLANTS, especially UMBELLIFERAE and RUTACEAE, as well as PSORALEA. Furanocoumarin,Furanocoumarins,Furocoumarin,Psoralens,Angelicins
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014307 Trioxsalen Pigmenting photosensitizing agent obtained from several plants, mainly Psoralea corylifolia. It is administered either topically or orally in conjunction with ultraviolet light in the treatment of vitiligo. Trimethylpsoralen,Trioxysalen,2,5,9-Trimethyl-7H-furo(3,2-g)benzopyran-7-one,4,5',8-Trimethylpsoralen,NSC-71047,Trioxisalenum,Trisoralen,NSC 71047,NSC71047

Related Publications

F Esposito, and R G Brankamp, and R R Sinden
March 1987, Biochemistry,
F Esposito, and R G Brankamp, and R R Sinden
July 1992, Biochemistry,
F Esposito, and R G Brankamp, and R R Sinden
December 1973, Biochimica et biophysica acta,
F Esposito, and R G Brankamp, and R R Sinden
May 1989, Biochemistry,
F Esposito, and R G Brankamp, and R R Sinden
October 1970, Photochemistry and photobiology,
Copied contents to your clipboard!