Superoxide production from nonenzymatically glycated protein. 1988

T Sakurai, and S Tsuchiya
Tokyo College of Pharmacy, Japan.

Nonenzymatically glycated human serum albumin and glycated poly-lysine(Lys) in vitro brought about the reduction of nitroblue tetrazolium and ferricytochrome c at pH 9.06 and pH 7.8, respectively. This reduction was inhibited partially by superoxide dismutase (SOD). Glycated poly-Lys caused the oxidation of NADH in the presence of LDH at pH 7.0 which was completely inhibited by SOD. Glycated material was found to function both as a reductant and an oxidant. The reactivity of glycated material is discussed and a possible mechanism by which superoxide is produced is proposed. Results may give a clue to diabetic complications.

UI MeSH Term Description Entries
D009580 Nitroblue Tetrazolium Colorless to yellow dye that is reducible to blue or black formazan crystals by certain cells; formerly used to distinguish between nonbacterial and bacterial diseases, the latter causing neutrophils to reduce the dye; used to confirm diagnosis of chronic granulomatous disease. Nitro-BT,Nitrotetrazolium Blue,Tetrazolium Nitroblue,Blue, Nitrotetrazolium,Nitroblue, Tetrazolium,Tetrazolium, Nitroblue
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011107 Polylysine A peptide which is a homopolymer of lysine. Epsilon-Polylysine,Poly-(Alpha-L-Lysine),Epsilon Polylysine
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D000093423 Glycated Serum Albumin Serum albumin that has undergone, in vivo, spontaneous, non-enzymatic modification with reducing sugars via the MAILLARD REACTION. They are analyzed to measure control of HYPERGLYCEMIA. Glycated Albumin, Serum,Glycoalbumin,Glycosyl-Albumin,Glycosylated Serum Albumin,Serum Albumin, Glycosylated,Albumin, Glycated Serum,Albumin, Glycosylated Serum,Albumin, Serum Glycated,Glycosyl Albumin,Serum Albumin, Glycated,Serum Glycated Albumin
D012709 Serum Albumin A major protein in the BLOOD. It is important in maintaining the colloidal osmotic pressure and transporting large organic molecules. Plasma Albumin,Albumin, Serum
D013438 Sulfhydryl Compounds Compounds containing the -SH radical. Mercaptan,Mercapto Compounds,Sulfhydryl Compound,Thiol,Thiols,Mercaptans,Compound, Sulfhydryl,Compounds, Mercapto,Compounds, Sulfhydryl
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D017127 Glycation End Products, Advanced A heterogeneous group of compounds derived from rearrangements, oxidation, and cross-linking reactions that follow from non-enzymatic glycation of amino groups in PROTEINS; LIPIDS; or NUCLEIC ACIDS. Their accumulation in vivo accelerates under hyperglycemic, oxidative, or inflammatory conditions. Heat also accelerates the formation of advanced glycation end products (AGEs) such seen with the browning of food during cooking. Advanced Glycation End Product,Advanced Glycation Endproduct,Advanced Maillard Reaction End Product,Glycated Lipids,Glycotoxins,Maillard Product,Maillard Reaction End Product,Maillard Reaction Product,Advanced Glycation End Products,Advanced Glycation Endproducts,Advanced Maillard Reaction End Products,Glycation Endproducts, Advanced,Maillard Products,Maillard Reaction End Products,Maillard Reaction Products,Glycation Endproduct, Advanced,Lipids, Glycated,Product, Maillard Reaction,Products, Maillard,Products, Maillard Reaction,Reaction Products, Maillard

Related Publications

T Sakurai, and S Tsuchiya
August 1986, Clinica chimica acta; international journal of clinical chemistry,
T Sakurai, and S Tsuchiya
August 1987, Experimental and clinical endocrinology,
T Sakurai, and S Tsuchiya
August 1995, Kidney international,
T Sakurai, and S Tsuchiya
February 1989, Biochimica et biophysica acta,
T Sakurai, and S Tsuchiya
August 1994, Clinical biochemistry,
T Sakurai, and S Tsuchiya
April 2008, Annals of the New York Academy of Sciences,
T Sakurai, and S Tsuchiya
November 1991, Biochimica et biophysica acta,
Copied contents to your clipboard!