Surface as a motion surrogate for gated re-scanned pencil beam proton therapy. 2017

Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
Center for Proton Therapy, Paul Scherrer Institut, Villigen-PSI, Switzerland. Varian Medical Systems-Particle Therapy GmbH, Troisdorf, Germany.

This simulation study investigated the dosimetric effectiveness and treatment efficiency of surface motion guided gating of pencil beam scanning (PBS) proton therapy for liver tumour treatments. Dedicated 4D dose calculations were performed for simulating gated treatments using 4DCT data for six patients derived from 4DMRI (4DCT(MRI)). Surface motion as a surrogate for tumour motion was extracted from the 4DMRI images and a linear internal-external correlation model applied to derive amplitude-based gating windows (GWs) of 10 and 5 mm. 4D treatments were simulated using gating and layered/volumetric rescanning (either alone or combined) and four assumed system latencies (50/100/200/500 ms) for the response time of the beam gating to the surrogate. Resulting 4D plans were compared using D5-D95 and V95 in the CTV as the primary metrics, as well as dose to the healthy liver and total treatment time. With no motion mitigation, interplay effects deteriorate the dose homogeneity by more than 30% with respect to the static reference plan, whereas with surface motion guided gating alone, this could be reduced to 12/20% and 5/10% (mean/max over all cases) for 10 mm and 5 mm GWs, respectively. Furthermore, by combining  ×5 layered rescans with 5 mm GW, plan homogeneities to within 1/5% of the static references could be achieved. Dose inhomogeneities were however still pronounced for latencies  ⩾200 ms but limited when  ⩽100 ms. ITV volumes could be decreased by 19/25% when 10/5 mm GW was employed, leading to reductions in mean dose to the healthy liver tissue of 2.6/3.3%. Our results confirm the potential of combining gating and re-scanning (re-gating) for mitigating large tumor motions, and the potential of surface motion monitoring as a gating signal.

UI MeSH Term Description Entries
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D061766 Proton Therapy The use of an external beam of PROTONS as radiotherapy. Proton Beam Radiation Therapy,Proton Beam Therapy,Proton Beam Therapies,Proton Therapies,Therapies, Proton,Therapies, Proton Beam,Therapy, Proton,Therapy, Proton Beam

Related Publications

Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
May 2023, Physics in medicine and biology,
Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
April 2024, Physics in medicine and biology,
Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
March 2017, Physics in medicine and biology,
Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
July 2019, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
May 2019, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
December 2020, Physics in medicine and biology,
Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
December 2022, Physics in medicine and biology,
Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
August 2019, Physics in medicine and biology,
Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
December 2020, Medical physics,
Ye Zhang, and Isabel Huth, and Martin Wegner, and Damien C Weber, and Antony J Lomax
October 2021, International journal of radiation oncology, biology, physics,
Copied contents to your clipboard!