Structural and functional basis for GABAA receptor heterogeneity. 1988

E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
MRC Molecular Neurobiology Unit, MRC Centre, Cambridge, UK.

When gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in vertebrate brain, binds to its receptor it activates a chloride channel. Neurotransmitter action at the GABAA receptor is potentiated by both benzodiazepines and barbiturates which are therapeutically useful drugs (reviewed in ref. 1). There is strong evidence that this receptor is heterogeneous. We have previously isolated complementary DNAs encoding an alpha- and a beta-subunit and shown that both are needed for expression of a functional GABAA receptor. We have now isolated cDNAs encoding two additional GABAA receptor alpha-subunits, confirming the heterogeneous nature of the receptor/chloride channel complex and demonstrating a molecular basis for it. These alpha-subunits are differentially expressed within the CNS and produce, when expressed with the beta-subunit in Xenopus oocytes, receptor subtypes which can be distinguished by their apparent sensitivity to GABA. Highly homologous receptor subtypes which differ functionally seem to be a common feature of brain receptors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
November 2017, Nature structural & molecular biology,
E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
January 1991, Advances in experimental medicine and biology,
E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
June 1989, The EMBO journal,
E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
February 2007, Neurology,
E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
January 2018, PloS one,
E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
October 1984, Federation proceedings,
E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
April 1994, Current opinion in cell biology,
E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
April 1999, Journal of neurophysiology,
E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
August 1993, The European journal of neuroscience,
E S Levitan, and P R Schofield, and D R Burt, and L M Rhee, and W Wisden, and M Köhler, and N Fujita, and H F Rodriguez, and A Stephenson, and M G Darlison
May 1992, Cellular signalling,
Copied contents to your clipboard!