Characterization of pigment epithelial cell plasma membranes from normal and dystrophic rats. 1988

S C Braunagel, and D T Organisciak, and H M Wang
Department of Biochemistry, School of Medicine, Wright State University, Dayton, Ohio 45435.

Retinal pigment epithelial cell plasma membranes were isolated from the eyes of normal and RCS-dystrophic rats by binding glass microbeads to the intact pigment epithelial cell layer, removal of the bead-bound cells from the eyes and subsequent sucrose density gradient centrifugation. Plasma membranes were recovered from the gradients in identical yields and characterized by membrane marker enzymes, lipid analysis and SDS-polyacrylamide gel electrophoresis. Membrane purification by alkaline phosphodiesterase I and 5'nucleotidase activities averaged 8-fold for normal rats and 5.5 for the dystrophic rats. The ratio of cholesterol per microgram protein indicated 6 to 7-fold purification for both types of plasma membranes. Na+K+-ATPase in the normal and mutant rat plasma membranes was purified 5- and 3.5-fold, respectively, but the specific activities of both Na+K+-ATPase and 5'nucleotidase were higher in the dystrophic rat membranes than in normal. Subcellular organelle contamination was low and relatively uniform in both types of membranes, while opsin contamination was less than 1%. By electrophoretic analysis the plasma membrane proteins were similar, with 30-40 identifiable bands present in each membrane type. The plasma membranes both contain high levels of cholesterol, sphingomyelin and phosphatidylcholine and low levels of polyunsaturated fatty acids. However, the dystrophic rat membranes had significantly higher levels of docosahexaenoic acid than normal, and significantly lower levels of arachidonic acid. The differences in these plasma membrane fatty acids and in the membrane-bound enzymes may affect the ionic balance of the interphotoreceptor matrix or otherwise contribute to degenerative changes in dystrophic rat photoreceptors.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012164 Retinal Diseases Diseases involving the RETINA. Disease, Retinal,Diseases, Retinal,Retinal Disease
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S C Braunagel, and D T Organisciak, and H M Wang
June 1984, Journal of neurocytology,
S C Braunagel, and D T Organisciak, and H M Wang
January 1997, Investigative ophthalmology & visual science,
S C Braunagel, and D T Organisciak, and H M Wang
June 1974, Comparative biochemistry and physiology. A, Comparative physiology,
S C Braunagel, and D T Organisciak, and H M Wang
February 1988, Biology of reproduction,
S C Braunagel, and D T Organisciak, and H M Wang
February 1991, Investigative ophthalmology & visual science,
S C Braunagel, and D T Organisciak, and H M Wang
April 1975, Biochimica et biophysica acta,
S C Braunagel, and D T Organisciak, and H M Wang
November 1986, Experimental eye research,
S C Braunagel, and D T Organisciak, and H M Wang
May 1965, Nature,
S C Braunagel, and D T Organisciak, and H M Wang
January 1999, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
Copied contents to your clipboard!