Effects of active vitamin D3 and parathyroid hormone on the serum osteocalcin in idiopathic hypoparathyroidism and pseudohypoparathyroidism. 1988

K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
Second Department of Internal Medicine, Tohoku University, School of Medicine, Sendai, Japan.

Serum osteocalcin was measured in patients with idiopathic hypoparathyroidism or pseudohypoparathyroidism, before or during the treatment with active vitamin D3 (1,25(OH)2D3 or 1 alpha OHD3). Serum osteocalcin and plasma 1,25(OH)2D were decreased in 11 patients with idiopathic hypoparathyroidism before treatment (2.8 +/- 1.27 ng/ml, P less than 0.001 and 14.3 +/- 4.27 pg/ml, P less than 0.001, respectively). In 24 patients with idiopathic hypoparathyroidism during the treatment, serum osteocalcin and plasma 1,25(OH)2D were within the normal range (4.5 +/- 0.74 ng/ml and 25.7 +/- 5.69 pg/ml, respectively). In five patients with pseudohypoparathyroidism before treatment, plasma 1,25(OH)2D was decreased (15.6 +/- 10.6 pg/ml, P less than 0.001) but serum osteocalcin was normal (7.8 +/- 1.66 ng/ml). In nine patients with pseudohypoparathyroidism during the treatment with active vitamin D3, serum osteocalcin and plasma 1,25(OH)2D were normal (6.8 +/- 1.47 ng/ml and 27.2 +/- 6.0 pg/ml, respectively). Serum PTH in pseudohypoparathyroidism was increased before treatment (0.70 +/- 0.34 ng/ml, P less than 0.05) and was normal during the treatment (0.50 +/- 0.13 ng/ml). In idiopathic hypoparathyroidism, the active vitamin D3 increased serum osteocalcin without PTH. In pseudohypoparathyroidism, PTH may increase serum osteocalcin or modulate the effect of active vitamin D3 on serum osteocalcin.

UI MeSH Term Description Entries
D007011 Hypoparathyroidism A condition caused by a deficiency of PARATHYROID HORMONE (or PTH). It is characterized by HYPOCALCEMIA and hyperphosphatemia. Hypocalcemia leads to TETANY. The acquired form is due to removal or injuries to the PARATHYROID GLANDS. The congenital form is due to mutations of genes, such as TBX1; (see DIGEORGE SYNDROME); CASR encoding CALCIUM-SENSING RECEPTOR; or PTH encoding parathyroid hormone. Idiopathic Hypoparathyroidism,Hypoparathyroidism, Idiopathic
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011547 Pseudohypoparathyroidism A hereditary syndrome clinically similar to HYPOPARATHYROIDISM. It is characterized by HYPOCALCEMIA; HYPERPHOSPHATEMIA; and associated skeletal development impairment and caused by failure of response to PARATHYROID HORMONE rather than deficiencies. A severe form with resistance to multiple hormones is referred to as Type 1a and is associated with maternal mutant allele of the ALPHA CHAIN OF STIMULATORY G PROTEIN. Albright Hereditary Osteodystrophy,PHPIa,Albright Hereditary Osteodystrophy with Multiple Hormone Resistance,PHD Ib,PHD1b,PHP Ia,Pseudohypoparathyroidism Type 1B,Pseudohypoparathyroidism, Type Ia,Pseudohypoparathyroidism, Type Ib,Hereditary Osteodystrophy, Albright,Osteodystrophy, Albright Hereditary,Pseudohypoparathyroidism Type 1Bs,Pseudohypoparathyroidisms,Pseudohypoparathyroidisms, Type Ia,Pseudohypoparathyroidisms, Type Ib,Type Ia Pseudohypoparathyroidism,Type Ia Pseudohypoparathyroidisms,Type Ib Pseudohypoparathyroidism,Type Ib Pseudohypoparathyroidisms
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002762 Cholecalciferol Derivative of 7-dehydroxycholesterol formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. It differs from ERGOCALCIFEROL in having a single bond between C22 and C23 and lacking a methyl group at C24. Vitamin D 3,(3 beta,5Z,7E)-9,10-Secocholesta-5,7,10(19)-trien-3-ol,Calciol,Cholecalciferols,Vitamin D3

Related Publications

K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
February 1977, The Journal of clinical endocrinology and metabolism,
K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
April 1991, Ugeskrift for laeger,
K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
August 2007, Clinical calcium,
K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
March 1963, The West Indian medical journal,
K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
January 1993, Nihon rinsho. Japanese journal of clinical medicine,
K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
June 1978, The Journal of clinical endocrinology and metabolism,
K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
July 1987, Calcified tissue international,
K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
March 1985, The Journal of pediatrics,
K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
January 1986, Advances in experimental medicine and biology,
K Mizunashi, and Y Furukawa, and R Miura, and S Yumita, and H E Sohn, and K Yoshinaga
October 2004, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!