The effect of oxygen free radicals on calcium permeability and calcium loading at steady state in cardiac sarcoplasmic reticulum. 1988

E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
Department of Pharmacology, Kanagawa Dental College, Japan.

It has been proposed that oxygen free radical production is an important mediator of the myocardial dysfunction during the course of acute ischemia. We tested this hypothesis by characterizing the pathway of calcium efflux across sarcoplasmic reticulum (SR) membranes affected by oxygen free radicals. The effect of oxygen free radicals on the steady state calcium load, calcium permeability, and Ca,Mg-ATPase activity of isolated canine cardiac SR vesicles was investigated at pH 7.0. In vitro generation of oxygen free radicals by xanthine oxidase (0.09 units/ml), acting on xanthine in doses up to 50 microM as a substrate, increased the permeability of the SR vesicles to calcium, determined by measuring net efflux of calcium after stopping pump-mediated fluxes, and decreased total intravesicular calcium and free intravesicular calcium with no effect on Ca,Mg-ATPase activity. The effect of oxygen free radicals on calcium permeability was calcium gradient-dependent. Xanthine alone or xanthine plus denatured xanthine oxidase had no effect on this system. Superoxide dismutase (SOD, 56 units/ml), but not denatured SOD, significantly inhibited the effect of xanthine-xanthine oxidase reaction. The calcium permeability of the SR membrane decreased with decreasing calcium load. In addition, inasmuch as extravesicular calcium exerts only a slight effect on calcium permeability, the decrease in the permeability with calcium load is specifically related to the calcium load. Oxygen free radical-induced increase in calcium permeability was unaffected by Mg concentration between 2.1 and 21 mM. In summary, our data reveal that .O2- can produce a diminished level of accumulated calcium, which is reflected by the decreased calcium load and an increase in passive calcium permeability, and that the decreased calcium accumulation in the presence of the xanthine-xanthine oxidase system may not be mainly due to an inhibited calcium pump but due to an increased calcium permeability. Our results also suggest that increased SR membrane passive calcium permeability induced by oxygen free radicals is not carrier mediated. It is postulated that, with the oxygen free radical-mediated progressive increase in calcium permeability, free cytosolic calcium concentrations would increase in ischemic myocardium.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion

Related Publications

E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
July 1989, The Journal of pharmacology and experimental therapeutics,
E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
January 1983, Biochimica et biophysica acta,
E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
December 1989, Kanagawa shigaku. The Journal of the Kanagawa Odontological Society,
E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
March 1992, Cardiologia (Rome, Italy),
E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
September 1982, The Journal of biological chemistry,
E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
January 1988, Progress in clinical and biological research,
E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
January 1983, Circulatory shock,
E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
March 1991, The Journal of pharmacology and experimental therapeutics,
E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
August 1981, Journal of molecular and cellular cardiology,
E Okabe, and C Odajima, and R Taga, and R C Kukreja, and M L Hess, and H Ito
August 1976, FEBS letters,
Copied contents to your clipboard!