Tissue-specific differences between heart and liver cytochrome c oxidase. 1988

W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
Institute of Molecular Biology, University of Oregon, Eugene 97403.

Bovine liver cytochrome c oxidase has been isolated and the subunit structure of this preparation compared with that of the bovine heart enzyme. Of the 10 nuclear-coded subunits, 3 were different in the 2 tissue forms, having different migrations in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, different antigenicities to antibodies made against the heart subunits, and different N-terminal amino acid sequences. Subunit ASA of heart begins with the N-terminal sequence of SSG in liver and is different in 17 of the first 33 residues including a deletion of 2 residues in the liver isoform of this subunit. Subunit CVII of liver differs from its heart counterpart in 6 of the first 37 residues while subunit CIX from liver differs from the heart isoform in 15 of the first 25 residues. No differences between tissue types were observed in partial sequencing of the remaining nuclear-coded subunits. Recently, the major portion of the sequence of subunit CIX from rat liver has been obtained by cloning and sequencing of the cDNA for this polypeptide [Suske, G., Mengel, T., Cordingley, M., & Kadenbach, B. (1987) Eur. J. Biochem. 168, 233-237]. There is a greater sequence homology of the rat and bovine liver forms of CIX than there is between the bovine heart and liver isoforms.

UI MeSH Term Description Entries
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
February 1982, FEBS letters,
W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
April 2016, Biochimica et biophysica acta,
W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
June 1982, European journal of biochemistry,
W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
November 1990, Nucleic acids research,
W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
August 1993, Biochemistry,
W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
August 1997, Current opinion in structural biology,
W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
January 2000, Sub-cellular biochemistry,
W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
February 1990, Biochimica et biophysica acta,
W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
April 1986, European journal of biochemistry,
W Yanamura, and Y Z Zhang, and S Takamiya, and R A Capaldi
January 1985, Biochimie,
Copied contents to your clipboard!