High-Fat Diet Feeding Alters Expression of Hepatic Drug-Metabolizing Enzymes in Mice. 2017

Miaoran Ning, and Hyunyoung Jeong
Department of Pharmacy Practice (H.J.) and Department of Biopharmaceutical Sciences (M.N., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.

Medical conditions accompanying obesity often require drug therapy, but whether and how obesity alters the expression of drug-metabolizing enzymes and thus drug pharmacokinetics is poorly defined. Previous studies have shown that high-fat diet (HFD) feeding and subsequent obesity in mice lead to altered expression of transcriptional regulators for cytochrome P450 CYP2D6, including hepatocyte nuclear factor 4α (HNF4α, a transcriptional activator of CYP2D6) and small heterodimer partner (SHP, a transcriptional repressor of CYP2D6). The objective of this study was to examine whether diet-induced obesity alters CYP2D6 expression by modulating HNF4α and SHP expression. Male CYP2D6-humanized transgenic (Tg-CYP2D6) mice were fed with HFD or matching control diet for 18 weeks. Hepatic mRNA expression of CYP2D6 decreased to a small extent in the HFD group (by 31%), but the differences in CYP2D6 protein and activity levels in hepatic S9 fractions were found insignificant between the groups. Although hepatic SHP expression did not differ between the groups, HNF4α mRNA and protein levels decreased by ∼30% in the HFD group. Among major mouse endogenous cytochrome P450 genes, Cyp1a2 and Cyp2c37 showed significant decreases in the HFD group, whereas Cyp2e1 expression did not differ between groups. Cyp2b10 and Cyp3a11 expression was higher in the HFD group, with corresponding 2.9-fold increases in hepatic CYP3A activities in HFD-fed mice. Together, these results suggest that obesity has minimal effects on CYP2D6-mediated drug metabolism, although it modulates the expression of mouse endogenous P450s in a gene-specific manner.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D008658 Inactivation, Metabolic Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion. Detoxication, Drug, Metabolic,Drug Detoxication, Metabolic,Metabolic Detoxication, Drug,Detoxification, Drug, Metabolic,Metabolic Detoxification, Drug,Metabolic Drug Inactivation,Detoxication, Drug Metabolic,Detoxication, Metabolic Drug,Detoxification, Drug Metabolic,Drug Inactivation, Metabolic,Drug Metabolic Detoxication,Drug Metabolic Detoxification,Inactivation, Metabolic Drug,Metabolic Drug Detoxication,Metabolic Inactivation
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Miaoran Ning, and Hyunyoung Jeong
May 2015, BioFactors (Oxford, England),
Miaoran Ning, and Hyunyoung Jeong
January 1978, General pharmacology,
Miaoran Ning, and Hyunyoung Jeong
January 2020, Frontiers in nutrition,
Miaoran Ning, and Hyunyoung Jeong
June 1993, The Indian journal of medical research,
Miaoran Ning, and Hyunyoung Jeong
June 2000, Toxicology letters,
Miaoran Ning, and Hyunyoung Jeong
August 2009, Molecular pharmacology,
Miaoran Ning, and Hyunyoung Jeong
February 1996, Biochimica et biophysica acta,
Copied contents to your clipboard!