Physiological role of glucoside 3-dehydrogenase and cytochrome c551 in the sugar oxidizing system of Flavobacterium saccharophilum. 1988

M Takeuchi, and N Asano, and Y Kameda, and K Matsui
Department of Biological Chemistry, School of Pharmacy, Hokuriku University, Ishikawa.

Flavobacterium saccharophilum cytoplasmic membranes contain several cytochromes linked to the respiratory chain. The presence of c-type cytochrome, cytochrome o, and a small amount of a-type cytochrome was proved. Cytochrome c551 was purified to electrophoretic homogeneity by ion-exchange chromatography and gel filtration from a membrane fraction of F. saccharophilum and its properties determined. Cytochrome c551 possessed absorption peaks at 407 nm in the oxidized form, and at 415, 521, 551 nm in the reduced form. The cytochrome c551 had a molecular weight of 15,500 as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Glucoside 3-dehydrogenase of F. saccharophilum reduced the cytochrome c551 with methyl-alpha-D-glucoside, D-glucose, sucrose, or validoxylamine A. When the purified glucoside 3-dehydrogenase was incubated with methyl-alpha-D-glucoside and purified ferricytochrome c551, methyl-alpha-D-3-ketoglucoside was formed as indicated by GC-MS analysis. The addition of a substrate to the membrane fraction caused an increase in the rate of oxygen uptake and an abrupt reduction in cytochrome c551. The electron transfer in the 3-keto sugar forming system may be as follows: sugars----glucoside 3-dehydrogenase----cytochrome c551----cytochrome oxidase----O2. Thus, the electron acceptor of glucoside 3-dehydrogenase is possibly connected to the membrane-bound cytochrome system.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002237 Carbohydrate Dehydrogenases Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99. Carbohydrate Oxidoreductases,Dehydrogenases, Carbohydrate,Oxidoreductases, Carbohydrate
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005417 Flavobacterium A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in SOIL and WATER. Its organisms are also found in raw meats, MILK and other FOOD, hospital environments, and human clinical specimens. Some species are pathogenic in humans.

Related Publications

M Takeuchi, and N Asano, and Y Kameda, and K Matsui
July 1987, Journal of inorganic biochemistry,
M Takeuchi, and N Asano, and Y Kameda, and K Matsui
June 1978, Proceedings of the National Academy of Sciences of the United States of America,
M Takeuchi, and N Asano, and Y Kameda, and K Matsui
June 1977, The Biochemical journal,
M Takeuchi, and N Asano, and Y Kameda, and K Matsui
January 2019, Frontiers in pharmacology,
M Takeuchi, and N Asano, and Y Kameda, and K Matsui
July 1981, Canadian journal of biochemistry,
M Takeuchi, and N Asano, and Y Kameda, and K Matsui
February 1954, The Biochemical journal,
M Takeuchi, and N Asano, and Y Kameda, and K Matsui
July 1988, Biochemical pharmacology,
M Takeuchi, and N Asano, and Y Kameda, and K Matsui
January 1962, Mikrobiologiia,
M Takeuchi, and N Asano, and Y Kameda, and K Matsui
February 2015, Journal of bacteriology,
Copied contents to your clipboard!