Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. 1988

B J Bowman, and R Allen, and M A Wechser, and E J Bowman
Department of Biology, Thimann Laboratories, University of California, Santa Cruz 95064.

In partially purified preparations of the vacuolar ATPase from Neurospora crassa, the two most prominent components are polypeptides of Mr = 70,000 and 60,000. We previously reported the isolation of the gene vma-1, which encodes the Mr = 70,000 polypeptide, and presented evidence that the polypeptide contains the site of ATP hydrolysis (Bowman, E. J., Tenney, K., and Bowman, B. J. (1988) J. Biol. Chem. 263, 13994-14001). We now report the isolation of a gene (designated vma-2), that encodes the Mr = 60,000 polypeptide. Analysis of the DNA sequence shows that the polypeptide has 513 amino acids and a molecular mass of 56,808 daltons (and will thus be referred to as the 57-kDa polypeptide). It is fairly rich in polar amino acids and has no apparent membrane-spanning domains. The vma-2 gene contains five short introns (55-71 bases), all clustered in the 5' end of the coding region. The gene maps to the right arm of linkage group II, near 5 S RNA gene 3. Thus, it is unlinked to vma-1 and to other known ATPase genes in N. crassa. The 57-kDa polypeptide shows 25% amino acid sequence identity with the vma-1 gene product. It shows essentially the same degree of similarity (25-28%) to both the alpha and beta subunits of F0F1 ATPases. Analysis of specific regions of the 57-kDa polypeptide, however, suggests it may have a function like that of the alpha subunit in F0F1 ATPases. The data indicate that all four types of ATPase polypeptides have evolved from a common ancestor and that the vacuolar-type ATPases have a structure surprisingly similar to that of the F0F1 ATPases.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009491 Neurospora A genus of ascomycetous fungi, family Sordariaceae, order SORDARIALES, comprising bread molds. They are capable of converting tryptophan to nicotinic acid and are used extensively in genetic and enzyme research. (Dorland, 27th ed) Neurosporas
D009492 Neurospora crassa A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies. Chrysonilia crassa
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

B J Bowman, and R Allen, and M A Wechser, and E J Bowman
October 1988, The Journal of biological chemistry,
B J Bowman, and R Allen, and M A Wechser, and E J Bowman
July 1995, Biochimica et biophysica acta,
B J Bowman, and R Allen, and M A Wechser, and E J Bowman
January 1989, The Journal of biological chemistry,
B J Bowman, and R Allen, and M A Wechser, and E J Bowman
April 1994, Molecular & general genetics : MGG,
B J Bowman, and R Allen, and M A Wechser, and E J Bowman
January 2000, The Journal of biological chemistry,
B J Bowman, and R Allen, and M A Wechser, and E J Bowman
November 1995, Molecular & general genetics : MGG,
B J Bowman, and R Allen, and M A Wechser, and E J Bowman
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
B J Bowman, and R Allen, and M A Wechser, and E J Bowman
August 1992, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!