Inhibition of human immunodeficiency virus (HIV-1/HTLV-IIIBa-L) replication in fresh and cultured human peripheral blood monocytes/macrophages by azidothymidine and related 2',3'-dideoxynucleosides. 1988

C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
Clinical Oncology Program, National Cancer Institute, Bethesda, Maryland 20892.

Because of the probable role of HIV-infected monocyte/macrophages in the pathogenesis and progression of AIDS, it is essential that antiretroviral therapy address viral replication in cells of this lineage. Several dideoxynucleosides have been shown to have potent in vitro and, in the case of 3'-azido-2',3'-dideoxythymidine (AZT) and 2',3'-dideoxycytidine (ddC), in vivo activity against HIV. However, because these compounds must be phosphorylated (activated) in target cells, and because monocyte/macrophages may have levels of kinases that differ from those in lymphocytes, we investigated the capacity of these drugs to suppress HIV replication in monocyte/macrophages using HIV-1/HTLV-IIIBa-L (a monocytotropic isolate). In the present study, we observed that HTLV-IIIBa-L replication in fresh human peripheral blood monocyte/macrophages was suppressed by each of three dideoxynucleosides: 3'-azido-2',3'-dideoxythymidine (AZT), 2',3'-dideoxycytidine (ddC), and 2',3'-dideoxyadenosine (ddA). Similar results were observed in 5-d-cultured monocyte/macrophages, although higher concentrations of the drugs were required. We then studied the metabolism of AZT and ddC in such cells. The phosphorylation of ddC to a triphosphate moiety was somewhat decreased in monocyte/macrophages as compared with H9 T cells. On the other hand, the phosphorylation of AZT in monocyte/macrophages was markedly decreased to 25% or less of the level in T cells. However, when we examined the level of the normal endogenous 2'-deoxynucleoside triphosphate pools, which compete with 2',3'-dideoxynucleoside triphosphate for viral reverse transcriptase, we found that the level of 2'-deoxycytidine-triphosphate (dCTP) was six- to eightfold reduced, and that of 2'-deoxythymidine-triphosphate (dTTP) was only a small fraction of that found in T cell lines. These results suggest that the ratio of dideoxynucleoside triphosphate to normal deoxynucleoside triphosphate is a crucial factor in determining the antiviral activity of dideoxynucleosides in HIV target cells, and that the lower levels of dTTP may account for the antiretroviral activity of AZT in the face of inefficient phosphorylation of this compound.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D003842 Deoxycytidine Kinase An enzyme that catalyzes reversibly the phosphorylation of deoxycytidine with the formation of a nucleoside diphosphate and deoxycytidine monophosphate. Cytosine arabinoside can also act as an acceptor. All natural nucleoside triphosphates, except deoxycytidine triphosphate, can act as donors. The enzyme is induced by some viruses, particularly the herpes simplex virus (HERPESVIRUS HOMINIS). EC 2.7.1.74. Kinase, Deoxycytidine
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
October 1987, The Journal of experimental medicine,
C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
February 1993, Bratislavske lekarske listy,
C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
May 1989, Proceedings of the National Academy of Sciences of the United States of America,
C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
May 1990, The Journal of infectious diseases,
C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
May 1997, The American journal of physiology,
C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
September 1990, European journal of biochemistry,
C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
December 1994, The Journal of infectious diseases,
C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
March 2001, AIDS research and human retroviruses,
C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
January 1990, Antimicrobial agents and chemotherapy,
C F Perno, and R Yarchoan, and D A Cooney, and N R Hartman, and S Gartner, and M Popovic, and Z Hao, and T L Gerrard, and Y A Wilson, and D G Johns
November 1988, Biochemical and biophysical research communications,
Copied contents to your clipboard!