Structure of the complex of adenylate kinase from Escherichia coli with the inhibitor P1,P5-di(adenosine-5'-)pentaphosphate. 1988

C W Müller, and G E Schulz
Institut für Organische Chemie und Biochemie der Universität, Freiburg i.Br., F.R.G.

The enzyme adenylate kinase was isolated from Escherichia coli and crystallized together with a substrate-mimicking inhibitor. The crystal structure was solved using the multiple isomorphous replacement method at a resolution of 4.5 A (1 A = 0.1 nm). There are two enzyme-inhibitor complex molecules in the asymmetric unit, the relative positions of which are given. The resolution was extended to 2.3 A starting with the model of the homologous enzyme from yeast and using constrained-restrained and restrained refinements together with the known non-crystallographic symmetry. The final R-factor is 35.9%. The corresponding model is given as backbone tracing. The structure will be used for protein-engineering studies.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000263 Adenylate Kinase An enzyme that catalyzes the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate. EC 2.7.4.3. Myokinase,AMP Kinase,ATP-AMP Phosphotransferase,ATP-AMP Transphosphorylase,Adenylokinase,ATP AMP Phosphotransferase,ATP AMP Transphosphorylase,Kinase, AMP,Kinase, Adenylate,Phosphotransferase, ATP-AMP,Transphosphorylase, ATP-AMP
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D015226 Dinucleoside Phosphates A group of compounds which consist of a nucleotide molecule to which an additional nucleoside is attached through the phosphate molecule(s). The nucleotide can contain any number of phosphates. Bis(5'-Nucleosidyl)Oligophosphates,Bis(5'-Nucleosidyl)Phosphates,Deoxydinucleoside Phosphates,Dinucleoside Diphosphates,Dinucleoside Monophosphates,Dinucleoside Oligophosphates,Dinucleoside Tetraphosphates,Dinucleoside Triphosphates,Bis(5'-Nucleosidyl)Tetraphosphate,Dinucleoside Polyphosphates,Diphosphates, Dinucleoside,Monophosphates, Dinucleoside,Oligophosphates, Dinucleoside,Phosphates, Deoxydinucleoside,Phosphates, Dinucleoside,Polyphosphates, Dinucleoside,Tetraphosphates, Dinucleoside,Triphosphates, Dinucleoside

Related Publications

C W Müller, and G E Schulz
October 1978, Biochemical and biophysical research communications,
C W Müller, and G E Schulz
May 1986, The Journal of biological chemistry,
C W Müller, and G E Schulz
January 1977, Zeitschrift fur Naturforschung. Section C, Biosciences,
C W Müller, and G E Schulz
December 1977, Proceedings of the National Academy of Sciences of the United States of America,
C W Müller, and G E Schulz
February 1973, The Journal of biological chemistry,
Copied contents to your clipboard!