Degradation of glomerular basement membrane by purified mammalian metalloproteinases. 1988

W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
Department of Biochemistry, Tulane Medical School, New Orleans, LA 70112.

Neutral metalloproteinases degrade components of the extracellular matrix, including collagen types I-V, fibronectin, laminin and proteoglycan. However, their ability to degrade intact glomerular basement membrane (GBM) has not previously been investigated. Incubation of [3H]GBM (50,000 c.p.m.; pH 7.5; 24 h at 37 degrees C) with purified gelatinase or stromelysin (2 units) resulted in significant GBM degradation: gelatinase, 46 +/- 2.2; stromelysin, 59 +/- 5.8 (means +/- S.E.M.; percentage release of non-sedimentable radioactivity; n = 4). In contrast, 2 units of collagenase released only 5.6 +/- 0.52% (n = 3) of the [3H]GBM radioactivity compared with 2.0 +/- 0.15% (n = 7) released from [3H]GBM incubated alone. Sephadex G-200 gel chromatography of supernatants obtained from incubations of [3H]GBM with either gelatinase or stromelysin confirmed the ability of these enzymes to degrade GBM and revealed both high-(800,000) and relatively low-(less than 20,000) Mr degradation products for both enzymes. GBM degradation by gelatinase and stromelysin was dose-dependent (range 0.02-2.0 units), near maximal between pH 6.0 and 8.6, and was completely inhibited (greater than 95%) by 2 mM-o-phenanthroline. Collagenase (2 units) did not enhance the degradation of GBM by either gelatinase (0.02 or 0.2 unit) or stromelysin (0.02 or 0.2 unit). Our results indicate that metalloproteinase-mediated GBM degradation by neutrophils and glomeruli may be attributable to gelatinase (neutrophils) and/or stromelysin (glomeruli) and suggest an important role for these proteinases in glomerular pathophysiology.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D010434 Pepsin A Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice. Pepsin,Pepsin 1,Pepsin 3
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003012 Microbial Collagenase A metalloproteinase which degrades helical regions of native collagen to small fragments. Preferred cleavage is -Gly in the sequence -Pro-Xaa-Gly-Pro-. Six forms (or 2 classes) have been isolated from Clostridium histolyticum that are immunologically cross-reactive but possess different sequences and different specificities. Other variants have been isolated from Bacillus cereus, Empedobacter collagenolyticum, Pseudomonas marinoglutinosa, and species of Vibrio and Streptomyces. EC 3.4.24.3. Clostridiopeptidase A,Clostridium histolyticum Collagenase,Collagenase, Microbial,Collagenase Clostridium histolyticum,Collagenase-Like Peptidase,Collalysine,Nucleolysin,Clostridium histolyticum, Collagenase,Collagenase Like Peptidase,Collagenase, Clostridium histolyticum,Peptidase, Collagenase-Like,histolyticum, Collagenase Clostridium
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D018093 Gelatinases A class of enzymes that catalyzes the degradation of gelatin by acting on the peptide bonds. EC 3.4.24.-. Gelatinase

Related Publications

W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
January 1981, Renal physiology,
W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
June 1984, Biochimica et biophysica acta,
W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
January 1980, Transactions of the American Microscopical Society,
W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
September 1990, Kidney international,
W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
September 1987, Journal of cellular biochemistry,
W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
October 1967, Nature,
W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
March 1988, Collagen and related research,
W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
August 1973, European journal of biochemistry,
W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
January 1987, Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie,
W H Baricos, and G Murphy, and Y W Zhou, and H H Nguyen, and S V Shah
May 2023, Kidney international reports,
Copied contents to your clipboard!