Chemical modification of surfactant protein A alters high affinity binding to rat alveolar type II cells and regulation of phospholipid secretion. 1988

Y Kuroki, and R J Mason, and D R Voelker
Lord and Taylor Laboratory for Lung Biochemistry, Department of Medicine, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206.

Alveolar type II cells express a high affinity receptor for pulmonary surfactant protein A (SP-A), and the interaction of SP-A with these cells leads to inhibition of surfactant lipid secretion. We have investigated the binding of native and modified forms of SP-A to isolated rat alveolar type II cells. Native and deglycosylated forms of SP-A readily competed with 125I-SP-A for cell surface binding. Alkylation of SP-A with excess iodoacetamide yielded forms of SP-A that did not inhibit surfactant lipid secretion and did not compete with 125I-SP-A for cell surface binding. Reductive methylation of SP-A with H2CO and NaCNBH3 yielded forms of SP-A with markedly reduced receptor binding activity that also exhibited significantly reduced capacity to inhibit lipid secretion. Modification of SP-A with cyclohexanedione reversibly altered cell surface binding and the activity of SP-A as an inhibitor of lipid secretion. Two monoclonal antibodies that block the function of SP-A as an inhibitor of lipid secretion completely prevented the high affinity binding of SP-A to type II cells. A monoclonal antibody that recognizes epitopes on SP-A but failed to block the inhibition of secretion also failed to completely attenuate high affinity binding to the receptor. Concanavalin A inhibits phospholipid secretion of type II cells by a mechanism that is reversed in the presence of excess alpha-methylmannoside. Concanavalin A did not block the high affinity binding of 125I-SP-A to the receptor. Neither the high affinity binding nor the inhibitor activity of SP-A was prevented by the presence of mannose or alpha-methylmannoside. The SP-A derived from humans with alveolar proteinosis is a potent inhibitor of surfactant lipid secretion but failed to completely displace 125I-SP-A binding from type II cells. From these data we conclude that: 1) cell surface binding activity of rat SP-A is directly related to its capacity to inhibit surfactant lipid secretion; 2) monoclonal antibodies directed against SP-A can be used to map binding domains for the receptor; 3) the lectin activity of SP-A against mannose ligands does not appear to be essential for cell surface binding; 4) concanavalin A does not compete with SP-A for receptor binding; and 5) the human SP-A derived from individuals with alveolar proteinosis exhibits different binding characteristics from rat SP-A.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008358 Mannose A hexose or fermentable monosaccharide and isomer of glucose from manna, the ash Fraxinus ornus and related plants. (From Grant & Hackh's Chemical Dictionary, 5th ed & Random House Unabridged Dictionary, 2d ed) D-Mannose,Mannopyranose,Mannopyranoside,D Mannose
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D011663 Pulmonary Surfactants Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI. Surfactants, Pulmonary,Pulmonary Surfactant,Surfactant, Pulmonary
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated

Related Publications

Y Kuroki, and R J Mason, and D R Voelker
February 1988, Biochimica et biophysica acta,
Y Kuroki, and R J Mason, and D R Voelker
January 1998, The Journal of infectious diseases,
Y Kuroki, and R J Mason, and D R Voelker
August 2007, American journal of physiology. Lung cellular and molecular physiology,
Y Kuroki, and R J Mason, and D R Voelker
February 1997, The American journal of physiology,
Y Kuroki, and R J Mason, and D R Voelker
August 1987, Journal of applied physiology (Bethesda, Md. : 1985),
Y Kuroki, and R J Mason, and D R Voelker
February 2002, American journal of physiology. Lung cellular and molecular physiology,
Y Kuroki, and R J Mason, and D R Voelker
March 1996, Pediatric research,
Copied contents to your clipboard!