Cloning and characterization of a core histone gene tandem repeat in Urechis caupo. 1988

L D Ingham, and F C Davis
Department of Microbiology and Cell Science, University of Florida, Gainesville 32611-0116.

A Urechis caupo histone gene tandem repeat has been isolated from a 5.0-kilobase EcoRI genomic library in lambda gtWES.lambda B. Genomic reconstruction experiments indicate that the cloned sequence is repeated approximately 100 times per haploid genome. Unique restriction fragments from the cloned sequence hybridize with individual core histone genes from a histone gene tandem repeat of the sea urchin, Strongylocentrotus purpuratus. No hybridization is detected when restriction digests are probed with a sea urchin H1 histone gene. Hybrid selection and in vitro translation of embryo mRNAs demonstrate that the clone contains sequences complementary to all four core histones; however, no H1 histone is detected among the translation products. Based on a restriction site map of the clone and the subcloned sequences which hybridize to the histone mRNAs, the order of the core histone genes in the clone is shown to be H3 H2A H2B H4. S1 nuclease hybrid protection mapping is used to locate the coding regions and to determine the transcript lengths of the core histone mRNAs. The transcript lengths of H2A, H2B, H3, and H4 mRNAs are approximately 464, 438, 494, and 397 bases, respectively. The S1 nuclease mapping also demonstrates that H2A and H4 are transcribed from one DNA strand while H2B and H3 are transcribed from the other strand. In the tandem repeat, the genes are organized so that transcription of the H2A-H2B and H3-H4 gene pairs is divergent.

UI MeSH Term Description Entries
D007448 Invertebrates Animals that have no spinal column. Brachiopoda,Mesozoa,Brachiopodas,Invertebrate,Mesozoas
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D015719 Single-Strand Specific DNA and RNA Endonucleases Enzymes that catalyze the endonucleolytic cleavage of single-stranded regions of DNA or RNA molecules while leaving the double-stranded regions intact. They are particularly useful in the laboratory for producing "blunt-ended" DNA molecules from DNA with single-stranded ends and for sensitive GENETIC TECHNIQUES such as NUCLEASE PROTECTION ASSAYS that involve the detection of single-stranded DNA and RNA. Single Strand Specific DNA and RNA Endonucleases

Related Publications

L D Ingham, and F C Davis
May 1982, Cell differentiation,
L D Ingham, and F C Davis
July 1983, Developmental biology,
L D Ingham, and F C Davis
March 1985, Journal of cell science,
L D Ingham, and F C Davis
March 1994, Journal of molecular biology,
L D Ingham, and F C Davis
January 1984, Archives of biochemistry and biophysics,
L D Ingham, and F C Davis
September 1954, Science (New York, N.Y.),
L D Ingham, and F C Davis
June 1977, Developmental biology,
L D Ingham, and F C Davis
April 1981, Developmental biology,
Copied contents to your clipboard!