Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. 2017

S Shabalala, and C J F Muller, and J Louw, and R Johnson
Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, 3886, South Africa.

Doxorubicin is a highly effective, first line chemotherapeutic agent used in the management of hematological and solid tumors. The effective use of doxorubicin in cancer therapy has been severely limited owing to its well-documented cardiotoxic side effect. Oxidative stress, lipid peroxidation, apoptosis as well as dysregulation of autophagy, has been implicated as a major contributor associated with doxorubicin-induced cardiotoxicity. Increased oxidative stress and lipid peroxidation are known to enhance the production of reactive oxygen species, while autophagy has been reported to protect the cell from stress stimuli or, alternatively, contribute to cell death. Nonetheless, to date, no single chemical synthesized drug is available to prevent the harmful action of doxorubicin without reducing its anti-cancer efficacy. Therefore, the search for an effective and safe antagonist of doxorubicin-induced cardiotoxicity remains a challenge. In recent years, there has been much interest in the role plant-derived polyphenols play in the regulation of oxidative stress and autophagy. Therefore, the present review renders a concise overview of the mechanism associated with doxorubicin-induced cardiotoxicity as well as giving insight into the role plant-derived phytochemical play as a possible adjunctive therapy against the development of doxorubicin-induced cardiotoxicity.

UI MeSH Term Description Entries
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D015227 Lipid Peroxidation Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor. Lipid Peroxidations,Peroxidation, Lipid,Peroxidations, Lipid
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D059808 Polyphenols A large class of organic compounds having more than one PHENOL group. Polyphenol,Provinols
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

S Shabalala, and C J F Muller, and J Louw, and R Johnson
March 2016, International immunopharmacology,
S Shabalala, and C J F Muller, and J Louw, and R Johnson
April 2017, International journal of cardiology,
S Shabalala, and C J F Muller, and J Louw, and R Johnson
October 2021, Circulation research,
S Shabalala, and C J F Muller, and J Louw, and R Johnson
December 2013, Life sciences,
S Shabalala, and C J F Muller, and J Louw, and R Johnson
December 2023, Cell biology and toxicology,
S Shabalala, and C J F Muller, and J Louw, and R Johnson
January 2013, Biochemical pharmacology,
S Shabalala, and C J F Muller, and J Louw, and R Johnson
January 2020, Frontiers in physiology,
S Shabalala, and C J F Muller, and J Louw, and R Johnson
September 2019, Oncology letters,
S Shabalala, and C J F Muller, and J Louw, and R Johnson
July 2017, Oncotarget,
S Shabalala, and C J F Muller, and J Louw, and R Johnson
August 2017, Biochimica et biophysica acta. Molecular basis of disease,
Copied contents to your clipboard!