Regulatory interactions of the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II. 1988

R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
Howard Hughes Medical Institute, Vanderbilt University Medical School, Nashville, Tennessee 37232.

Two peptide analogs of Ca2+/calmodulin-dependent protein kinase II (CaMK-(peptides)) were synthesized and used to probe interactions of the various regulatory domains of the kinase. CaMK-(281-289) contained only Thr286, the major Ca2+-dependent autophosphorylation site of the kinase (Schworer, C. M., Colbran, R. J., Keefer, J. R. & Soderling, T. R. (1988) J. Biol. Chem. 263, 13486-13489), whereas CaMK-(281-309) contained Thr286 together with the previously identified calmodulin binding and inhibitory domains (Payne, M. E., Fong, Y.-L., Ono, T., Colbran, R. J., Kemp, B. E., Soderling, T. R. & Means, A. R. (1988) J. Biol. Chem. 263, 7190-7195). CaMK-(281-309), but not CaMK-(281-289), bound calmodulin and was a potent inhibitor (IC50 = 0.88 +/- 0.7 microM using 20 microM syntide-2) of exogenous substrate (syntide-2 or glycogen synthase) phosphorylation by a completely Ca2+/calmodulin-independent form of the kinase generated by limited proteolysis with chymotrypsin. This inhibition was completely relieved by the inclusion of Ca2+/calmodulin in excess of CaMK-(281-309) in the assays. CaMK-(281-289) was a good substrate (Km = 11 microM; Vmax = 3.15 mumol/min/mg) for the proteolyzed kinase whereas phosphorylation of CaMK-(281-309) showed nonlinear Michaelis-Menton kinetics, with maximal phosphorylation (0.1 mumol/min/mg) at 20 microM and decreased phosphorylation at higher concentrations. The addition of Ca2+/calmodulin to assays stimulated the phosphorylation of CaMK-(281-309) by the proteolyzed kinase approximately 10-fold but did not affect the phosphorylation of CaMK-(281-289). A model for the regulation of Ca2+/calmodulin-dependent protein kinase II is proposed based on the above observations and results from other laboratories.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
September 1988, The Journal of biological chemistry,
R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
January 1990, Advances in second messenger and phosphoprotein research,
R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
December 1988, The Journal of biological chemistry,
R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
June 1986, Proceedings of the National Academy of Sciences of the United States of America,
R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
August 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
September 1988, Proceedings of the National Academy of Sciences of the United States of America,
R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
April 1993, The Journal of biological chemistry,
R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
October 1998, The Journal of biological chemistry,
R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
April 1996, The Journal of biological chemistry,
R J Colbran, and Y L Fong, and C M Schworer, and T R Soderling
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!