Epstein-Barr virus (EBV) infection of murine L cells expressing recombinant human EBV/C3d receptor. 1988

J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
Division of Molecular and Clinical Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.

The normal host range of Epstein-Barr virus (EBV) is limited to primate B lymphocytes and certain epithelial cells that express the C3d/EBV receptor [complement receptor 2 (CR2, CD21)]. In the present study, expansion of the tissue tropism of EBV has been accomplished by stably transfecting the murine fibroblast L cell line with pMT.CR2. neo.1, a eukaryotic expression vector promoting the transcription of a complementary DNA insert encoding human CR2. High CR2-expressing transfected L cells were selected by fluorescence-activated cell sorting. The recombinant CR2 was shown to have the same molecular weight as wild-type CR2 from Raji cells and to mediate the binding by the transfectants of particles bearing the iC3b and C3d fragments of the third component of complement. All CR2-expressing L cells, but not nontransfected controls, also bound EBV, as assessed by indirect immunofluorescence. After a 60-hr culture, approximately 0.5% of the CR2-expressing cells preincubated with EBV demonstrated immunofluorescent staining of EBV nuclear antigen with serum from a patient with nasopharyngeal carcinoma. No fluorescent staining of cells was seen with monoclonal antibodies to the early antigen complex or to gp350/220, indicating that the infection was predominantly latent. Infected cells cultured for up to 4 weeks remained EBV nuclear antigen-positive. The capacity of recombinant human CR2 to confer on murine L cells susceptibility to stable latent infection by EBV indicates that this receptor is a primary determinant of the tissue tropism of EBV and may facilitate studies of cell-specific factors that regulate the viral growth cycle.

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D011951 Receptors, Complement Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement. Complement Receptors,Complement Receptor,Complement Receptor Type 1,Receptor, Complement
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012397 Rosette Formation The in vitro formation of clusters consisting of a cell (usually a lymphocyte) surrounded by antigenic cells or antigen-bearing particles (usually erythrocytes, which may or may not be coated with antibody or antibody and complement). The rosette-forming cell may be an antibody-forming cell, a memory cell, a T-cell, a cell bearing surface cytophilic antibodies, or a monocyte possessing Fc receptors. Rosette formation can be used to identify specific populations of these cells. Immunocytoadherence,Formation, Rosette,Formations, Rosette,Immunocytoadherences,Rosette Formations

Related Publications

J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
February 1987, Hawaii medical journal,
J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
June 2004, Iranian journal of allergy, asthma, and immunology,
J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
July 1984, Proceedings of the National Academy of Sciences of the United States of America,
J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
April 2001, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology,
J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
February 1976, International journal of cancer,
J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
February 1989, The Journal of biological chemistry,
J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
June 2010, Nihon rinsho. Japanese journal of clinical medicine,
J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
December 1999, La Revue du praticien,
J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
April 1977, Die Medizinische Welt,
J M Ahearn, and S D Hayward, and J C Hickey, and D T Fearon
January 1984, Thymus,
Copied contents to your clipboard!