Alcohol aversion generalization in rats: specific disruption of taste and odor cues with gustatory neocortex or olfactory bulb ablations. 1988

S W Kiefer, and N S Morrow, and C W Metzler
Department of Psychology, Kansas State University, Manhattan 66506.

Rats with ablations of the gustatory neocortex (Experiment 1) and rats with olfactory bulb ablations (Experiment 2) were compared with normal rats for aversion generalization to both single taste solutions (sucrose, sodium chloride, quinine hydrochloride, hydrochloric acid) and compound taste solutions (pairs of the four single tastants) following alcohol aversion training. All rats acquired equal and strong alcohol aversions. Control rats showed consistent aversion generalization to both the sucrose + quinine and the sucrose + hydrochloric acid solutions; no significant generalization occurred to the single tastants except a weak generalization to sucrose in Experiment 2. Rats with gustatory neocortical ablations failed to show aversion generalization to any of the taste solutions. Rats with olfactory bulbectomies displayed the same aversion generalization functions as control rats but exhibited significantly faster extinction of the alcohol aversion than did the trained control rats. Results from the present experiments suggest that during alcohol aversion learning, rats lacking gustatory neocortex use odor cues (no taste generalization), whereas rats lacking olfactory bulbs utilize taste cues (normal taste generalization).

UI MeSH Term Description Entries
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D009812 Odorants The volatile portions of chemical substances perceptible by the sense of smell. Odors,Aroma,Fragrance,Scents,Aromas,Fragrances,Odor,Odorant,Scent
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003214 Conditioning, Classical Learning that takes place when a conditioned stimulus is paired with an unconditioned stimulus. Reflex, Conditioned,Classical Conditioning,Classical Conditionings,Conditioned Reflex,Conditionings, Classical
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000428 Alcohol Drinking Behaviors associated with the ingesting of ALCOHOLIC BEVERAGES, including social drinking. Alcohol Consumption,Alcohol Intake,Drinking, Alcohol,Alcohol Drinking Habits,Alcohol Drinking Habit,Alcohol Intakes,Consumption, Alcohol,Drinking Habit, Alcohol,Habit, Alcohol Drinking,Habits, Alcohol Drinking,Intake, Alcohol
D001362 Avoidance Learning A response to a cue that is instrumental in avoiding a noxious experience. Aversion Behavior,Aversion Learning,Aversive Behavior,Aversive Learning,Avoidance Behavior,Aversion Behaviors,Aversive Behaviors,Avoidance Behaviors,Behavior, Aversion,Behavior, Aversive,Behavior, Avoidance,Behaviors, Aversion,Behaviors, Aversive,Behaviors, Avoidance,Learning, Aversion,Learning, Aversive,Learning, Avoidance
D013649 Taste The ability to detect chemicals through gustatory receptors in the mouth, including those on the TONGUE; the PALATE; the PHARYNX; and the EPIGLOTTIS. Gustation,Taste Sense,Gustations,Sense, Taste,Senses, Taste,Taste Senses,Tastes

Related Publications

S W Kiefer, and N S Morrow, and C W Metzler
August 1982, Journal of comparative and physiological psychology,
S W Kiefer, and N S Morrow, and C W Metzler
October 1984, Behavioral neuroscience,
S W Kiefer, and N S Morrow, and C W Metzler
January 1985, Physiology & behavior,
S W Kiefer, and N S Morrow, and C W Metzler
March 1986, Behavioral and neural biology,
S W Kiefer, and N S Morrow, and C W Metzler
January 1986, Brain research,
S W Kiefer, and N S Morrow, and C W Metzler
August 1984, Behavioral neuroscience,
S W Kiefer, and N S Morrow, and C W Metzler
March 1991, Behavioral and neural biology,
S W Kiefer, and N S Morrow, and C W Metzler
May 1984, Behavioral and neural biology,
S W Kiefer, and N S Morrow, and C W Metzler
January 1987, Alcohol (Fayetteville, N.Y.),
S W Kiefer, and N S Morrow, and C W Metzler
February 1992, Behavioral neuroscience,
Copied contents to your clipboard!