Structural characterization of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectrometry. 1988

W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.

The glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase (EC 3.1.1.7) is composed of a glycan linked through a glucosamine residue to an inositol phospholipid that is resistant to the action of phosphatidylinositol-specific phospholipase C. Deamination cleavage of the glucosamine with nitrous acid released the inositol phospholipid which was purified by high performance liquid chromatography. Analysis by fast atom bombardment mass spectrometry with negative ion monitoring and by the complementary technique of collision-induced dissociation revealed molecular and daughter ions that indicated a plasmanylinositol with a palmitoyl group on an inositol hydroxyl. The intact membrane anchor was released from reductively methylated human erythrocyte acetylcholinesterase by proteolysis with papain or Pronase, deacylated by base hydrolysis, and purified by high performance liquid chromatography. Positive and negative ion fast atom bombardment mass spectrometry of the major products isolated by high performance liquid chromatography indicated the following structure for the complete glycoinositol phospholipid anchor. (formula; see text) Methylation of free amino groups by reduction with deuterium instead of hydrogen permitted determination of the number of free amino groups in individual fragment ions as further confirmation of structural assignments. The structure of the glycan portion of the human erythrocyte acetylcholinesterase membrane anchor appears to be similar to that described for Trypanosome brucei variant surface glycoprotein MITat 1.4 (variant 117) (Ferguson, M.A.J., Homans, S.W., Dwek, R.A., and Rademacher, T.W. (1988) Science 239, 753-759) except for the absence of a galactose antenna and the presence of a phosphorylethanolamine on the hexose adjacent to glucosamine.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D009608 Nitrous Acid Nitrous acid (HNO2). A weak acid that exists only in solution. It can form water-soluble nitrites and stable esters. (From Merck Index, 11th ed) Acid, Nitrous
D010206 Papain A proteolytic enzyme obtained from Carica papaya. It is also the name used for a purified mixture of papain and CHYMOPAPAIN that is used as a topical enzymatic debriding agent. EC 3.4.22.2. Tromasin
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010955 Plasmalogens GLYCEROPHOSPHOLIPIDS in which one of the two acyl chains is attached to glycerol with an ether alkenyl linkage instead of an ester as with the other glycerophospholipids. Phosphatidal Compounds,Plasmalogen,Alkenyl Ether Phospholipids,Compounds, Phosphatidal,Ether Phospholipids, Alkenyl,Phospholipids, Alkenyl Ether
D011402 Pronase A proteolytic enzyme obtained from Streptomyces griseus. Pronase E,Pronase P,Protease XIV,XIV, Protease
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D006017 Glycolipids Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage) Glycolipid

Related Publications

W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
March 1990, Biomedical & environmental mass spectrometry,
W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
November 2001, Journal of mass spectrometry : JMS,
W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
January 1989, Biomedical & environmental mass spectrometry,
W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
May 1999, Biochimica et biophysica acta,
W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
January 1997, Methods in molecular biology (Clifton, N.J.),
W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
January 1995, Methods in molecular biology (Clifton, N.J.),
W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
January 1996, Methods in enzymology,
W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
October 1982, Science (New York, N.Y.),
W L Roberts, and S Santikarn, and V N Reinhold, and T L Rosenberry
June 1985, The Journal of antibiotics,
Copied contents to your clipboard!