Effect of diets rich in either saturated fat or n-6 polyunsaturated fatty acids and supplemented with long-chain n-3 polyunsaturated fatty acids on plasma lipoprotein profiles. 2017

C B Dias, and N Amigo, and L G Wood, and X Correig, and M L Garg
Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.

Abnormalities in lipoprotein profiles (size, distribution and concentration) play an important role in the pathobiology of atherosclerosis and coronary artery disease. Dietary fat, among other factors, has been demonstrated to modulate lipoprotein profiles. We aimed to investigate if background dietary fat (saturated, SFA versus omega-6 polyunsaturated fatty acids, n-6PUFA) was a determinant of the effects of LCn-3PUFA supplementation on lipoprotein profiles. A randomized controlled clinical intervention trial in a parallel design was conducted. Healthy subjects (n=26) were supplemented with 400 mg eicosapentaenoic acid plus 2000 mg docosahexaenoic acid daily and randomized to consume diets rich in either SFA or n-6PUFA for a period of 6 weeks. Blood samples, collected at baseline and after 6 weeks of intervention, were assessed for plasma lipoprotein profiles (lipoprotein size, concentration and distribution in subclasses) determined using nuclear magnetic resonance spectroscopy. Study participants receiving the SFA or the n-6PUFA enriched diets consumed similar percentage energy from fat (41 and 42% respectively, P=0.681). However, subjects on the SFA diet consumed 50% more energy as saturated fat and 77% less as linoleic acid than those consuming the n-6PUFA diet (P<0.001). The diets rich in SFA and n-6PUFA reduced the concentration of total very-low-density lipoprotein (VLDL) particles (P<0.001, both), and their subclasses and increased VLDL (P=0.042 and P=0.007, respectively) and LDL (P=0.030 and 0.027, respectively) particle size. In addition, plasma triglyceride concentration was significantly reduced by LCn-3PUFA supplementation irrespective of the dietary fat. LCn-3PUFA modulated lipoprotein profiles in a similar fashion when supplemented in diets rich in either SFA or n-6PUFA.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008076 Cholesterol, HDL Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol. High Density Lipoprotein Cholesterol,Cholesterol, HDL2,Cholesterol, HDL3,HDL Cholesterol,HDL(2) Cholesterol,HDL(3) Cholesterol,HDL2 Cholesterol,HDL3 Cholesterol,alpha-Lipoprotein Cholesterol,Cholesterol, alpha-Lipoprotein,alpha Lipoprotein Cholesterol
D008078 Cholesterol, LDL Cholesterol which is contained in or bound to low density lipoproteins (LDL), including CHOLESTEROL ESTERS and free cholesterol. LDL Cholesterol,Cholesteryl Linoleate, LDL,LDL Cholesteryl Linoleate,Low Density Lipoprotein Cholesterol,beta-Lipoprotein Cholesterol,Cholesterol, beta-Lipoprotein,beta Lipoprotein Cholesterol
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004281 Docosahexaenoic Acids C22-unsaturated fatty acids found predominantly in FISH OILS. Docosahexaenoate,Docosahexaenoic Acid,Docosahexenoic Acids,Docosahexaenoic Acid (All-Z Isomer),Docosahexaenoic Acid Dimer (All-Z Isomer),Docosahexaenoic Acid, 3,6,9,12,15,18-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cerium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cesium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Potassium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(Z,Z,Z,Z,Z,E-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer, Sodium Salt,Docosahexaenoic Acid, Sodium Salt,Acid, Docosahexaenoic,Acids, Docosahexaenoic,Acids, Docosahexenoic
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

C B Dias, and N Amigo, and L G Wood, and X Correig, and M L Garg
February 1991, Biochemistry international,
C B Dias, and N Amigo, and L G Wood, and X Correig, and M L Garg
December 1997, Arteriosclerosis, thrombosis, and vascular biology,
C B Dias, and N Amigo, and L G Wood, and X Correig, and M L Garg
July 2016, European journal of clinical nutrition,
C B Dias, and N Amigo, and L G Wood, and X Correig, and M L Garg
March 1998, Lipids,
C B Dias, and N Amigo, and L G Wood, and X Correig, and M L Garg
August 2005, European journal of clinical investigation,
C B Dias, and N Amigo, and L G Wood, and X Correig, and M L Garg
May 2013, Nutrition (Burbank, Los Angeles County, Calif.),
C B Dias, and N Amigo, and L G Wood, and X Correig, and M L Garg
June 2007, The British journal of nutrition,
C B Dias, and N Amigo, and L G Wood, and X Correig, and M L Garg
January 2020, Physiology & behavior,
Copied contents to your clipboard!