Phytochemistry and Pharmacological Activities of the Genus Swertia (Gentianaceae): A Review. 2017

Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
* Institute of Medicine Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China.

Swertia plants have been considered to be medicinal plants useful for the treatment of various ailments for thousands of years, especially in Asian countries. This is due to the broad variety of chemical compounds that provide multiple ligands for bonding to different endogenous biomacromolecules for patients. Chemical constituents and pharmacological activities of Swertia plants are summarized in this paper. Approximately 419 metabolites and 40 bioactive compounds have been reported from 30 Swertia species, including xanthones, flavonoids, seco-iridiods, iridiods, triterpenoids, alkaloids, volatiles, and other secondary metabolites. The bioactivities of Swertia plants include anticarcinogenic, hepatoprotective, anti-oxidant, hypoglycemic, anthelmintic, antibacterial, antifungal, anti-diabetic, gut, and airways modulatory, metabolizing isozymes inhibitory, neuroprotective, HIV-I reverse transcriptases inhibitory, anticholinergic, and CNS-depressant activities, etc. In addition, biosynthetic pathways of xanthones, and seco-iridiods, two most important secondary metabolites for Swertia, are elucidated. The xanthones biosynthetic pathway is a mixed biosynthetic pathway involved the shikimate and the malonate routes, and the seco-iridoid pathway starts with geraniol derived from IPP which is produced either via the MEP or the MVA pathway. This review will offer a reference for future researches on the protection of natural resources, the investigation of therapeutic basis, new drug development, and so forth. Metabolic pathways of some crucial active compounds were also discussed in this review.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D002492 Central Nervous System Depressants A very loosely defined group of drugs that tend to reduce the activity of the central nervous system. The major groups included here are ethyl alcohol, anesthetics, hypnotics and sedatives, narcotics, and tranquilizing agents (antipsychotics and antianxiety agents). CNS Depressants,Depressants, CNS
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000871 Anthelmintics Agents that kill parasitic worms. They are used therapeutically in the treatment of HELMINTHIASIS in man and animal. Anthelmintic,Antihelmintic,Vermifuge,Vermifuges,Antihelmintics
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D000935 Antifungal Agents Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics

Related Publications

Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
December 2021, Natural product research,
Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
March 2023, Chemistry & biodiversity,
Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
June 2023, Fitoterapia,
Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
November 2004, Chemistry & biodiversity,
Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
November 2019, Planta,
Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
May 2017, Journal of ethnopharmacology,
Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
August 2016, Food chemistry,
Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
April 2024, Fitoterapia,
Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
April 2019, Journal of ethnopharmacology,
Jie Li, and Yan-Li Zhao, and Heng-Yu Huang, and Yuan-Zhong Wang
October 2020, Fitoterapia,
Copied contents to your clipboard!