Blocking kinetics of Cl- channels in colonic carcinoma cells (HT29) as revealed by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). 1988

J Dreinhöfer, and H Gögelein, and R Greger
Max-Planck-Institut für Biophysik, Frankfurt/Main, F.R.G.

The blocking effect of 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) was investigated on single Cl- channels of the cultured human colon carcinoma cells, HT29. In the absence of NPPB, the open-time histogram yielded two time constants, with 0.9 ms and 33 ms, whereas the closed-time distribution could be fitted by a single exponential with a time constant of 0.7 ms. Addition of NPPB in the range 1-50 microM induced brief closing events of the single-channel current. This resulted in a decrease of the long open-time constant to 2.1 ms and in an increase of the closed-time constant to 1.8 ms at 50 microM NPPB concentration. The short open-time constant did not change at low blocker concentration (1 microM), but could no longer be resolved at higher concentrations. The open-state probability decreased from 0.9 (control conditions) to 0.5 at 50 microM NPPB. The Hill plot yielded a Hill coefficient of about 0.7, compatible with one NPPB molecule inhibiting one channel molecule. The kinetics of channel gating are described by a sequential model with one closed and two open states. Since in the presence of NPPB no additional time constant appeared in the time histograms, we assumed the same kinetic scheme as under control conditions, and hypothesize that NPPB has an influence on rate constants.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009579 Nitrobenzoates Benzoic acid or benzoic acid esters substituted with one or more nitro groups. Nitrobenzoic Acids,Acids, Nitrobenzoic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018118 Chloride Channels Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN. CaCC,Calcium-Activated Chloride Channel,Chloride Ion Channel,Chlorine Channel,Ion Channels, Chloride,CaCCs,Calcium-Activated Chloride Channels,Chloride Channel,Chloride Ion Channels,Chlorine Channels,Ion Channel, Chloride,Calcium Activated Chloride Channel,Calcium Activated Chloride Channels,Channel, Calcium-Activated Chloride,Channel, Chloride,Channel, Chloride Ion,Channel, Chlorine,Channels, Calcium-Activated Chloride,Channels, Chloride,Channels, Chloride Ion,Channels, Chlorine,Chloride Channel, Calcium-Activated,Chloride Channels, Calcium-Activated

Related Publications

J Dreinhöfer, and H Gögelein, and R Greger
June 1992, The Journal of membrane biology,
J Dreinhöfer, and H Gögelein, and R Greger
December 2009, The Journal of biological chemistry,
J Dreinhöfer, and H Gögelein, and R Greger
January 2008, Pharmacology,
J Dreinhöfer, and H Gögelein, and R Greger
January 1996, British journal of pharmacology,
J Dreinhöfer, and H Gögelein, and R Greger
November 1991, Biochimica et biophysica acta,
J Dreinhöfer, and H Gögelein, and R Greger
April 2000, European journal of pharmacology,
Copied contents to your clipboard!