Reconstitution of Na+/K+-ATPase into phosphatidylcholine vesicles by dialysis of nonionic alkyl maltoside detergents. 1988

H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
Department of Biology, University of Konstanz, F.R.G.

The reconstitution of Na+/K+-ATPase from outer medulla of rabbit kidney into large unilamellar liposomes was achieved through detergent removal by dialysis of mixed micellar solutions of synthetic dioleoyl phosphatidylcholine/octyl glucoside and Na+/K+-ATPase/decyl maltoside or decenyl maltoside. Tight, transport-active liposomes were formed when the lipid and the enzyme were solubilized separately in the nonionic detergents and mixed immediately before starting the dialysis. The two maltoside detergents with different structures of the hydrophobic part of the molecule proved to be well suited for the solubilization of Na+/K+-ATPase with high retention of enzyme activity; the inactivation of enzyme being evidently slower with the unsaturated decenyl maltoside. The diameters of the proteoliposomes, 110 and 170 nm, respectively, were also dependent on the structure of the maltoside detergent, the saturated decyl maltoside producing the bigger liposomes. After freeze-fracture, both preparations exhibited intramembranous particles as structural indicators of successful reconstitution. The electrogenic activity of the reconstituted enzyme was determined by fluorescence measurements with Oxonol VI and by tracer-flux measurements with 22Na+.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D003956 Dialysis A process of selective diffusion through a membrane. It is usually used to separate low-molecular-weight solutes which diffuse through the membrane from the colloidal and high-molecular-weight solutes which do not. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Dialyses
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
May 1984, Biochimica et biophysica acta,
H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
June 1993, Biochimica et biophysica acta,
H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
March 1980, Archives of biochemistry and biophysics,
H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
January 1974, Ukrains'kyi biokhimichnyi zhurnal,
H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
January 2016, Methods in molecular biology (Clifton, N.J.),
H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
November 1986, The Journal of biological chemistry,
H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
December 1975, Annals of the New York Academy of Sciences,
H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
November 1983, Biochimica et biophysica acta,
H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
May 1986, The Journal of biological chemistry,
H Alpes, and H J Apell, and G Knoll, and H Plattner, and R Riek
September 1980, The Journal of cell biology,
Copied contents to your clipboard!