Genetic evidence for promoter competition in Saccharomyces cerevisiae. 1988

J E Hirschman, and K J Durbin, and F Winston
Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115.

The his4-912 delta mutation is an insertion of the long terminal repeat (delta) of the yeast retrotransposon Ty into the HIS4 promoter region, such that the delta is 97 base pairs upstream of the HIS4 transcription initiation site. Strains carrying the his4-912 delta allele are His- at 23 degrees C; this phenotype can be reversed either by growth at 37 degrees C or by mutations in trans-acting SPT genes. Under conditions in which his4-912 delta confers a His- phenotype. HIS4 transcription initiates at the delta initiation site, rather than at the HIS4 initiation site, producing a longer, nonfunctional transcript. Under conditions in which the strain is His+, transcription initiates at the wild-type HIS4 initiation site. To understand how transcription is balanced between the delta and HIS4 promoters, we have selected for cis-acting suppressors of his4-912 delta. Two classes defined by six independent mutations restore synthesis of a functional HIS4 transcript. The first class is an A-to-G base change 1 base upstream of the proposed delta TATA sequence. These mutants do not synthesize the delta-initiated transcript; instead, they synthesize only the wild-type HIS4 transcript. The second class of mutations alters base pairs surrounding the functional HIS4 TATA sequence. The two strongest His+ mutants of this class synthesize the wild-type HIS4 transcript at levels consistent with their His+ phenotype. Surprisingly, these two mutants also have a reduced level of the delta-initiated transcript relative to the his4-912 delta parent. Analysis of these mutants indicates that the level of transcription from one promoter can affect the level of transcription from the other promoter and suggests that delta and HIS4 transcription signals compete for initiation of transcription from each site.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

J E Hirschman, and K J Durbin, and F Winston
August 2020, Metabolites,
J E Hirschman, and K J Durbin, and F Winston
April 1994, Yeast (Chichester, England),
J E Hirschman, and K J Durbin, and F Winston
May 1990, Molecular and cellular biology,
J E Hirschman, and K J Durbin, and F Winston
April 2018, Microbial cell factories,
J E Hirschman, and K J Durbin, and F Winston
August 1993, FEMS microbiology letters,
J E Hirschman, and K J Durbin, and F Winston
December 1995, Journal of bacteriology,
J E Hirschman, and K J Durbin, and F Winston
March 1983, Molecular and cellular biology,
J E Hirschman, and K J Durbin, and F Winston
December 1980, Microbiological reviews,
J E Hirschman, and K J Durbin, and F Winston
March 1995, Trends in genetics : TIG,
Copied contents to your clipboard!