Affinity labeling of the ATP-binding site of type II calmodulin-dependent protein kinase by 5'-p-fluorosulfonylbenzoyl adenosine. 1988

M M King, and D J Shell, and A P Kwiatkowski
Department of Chemistry, Ohio State University, Columbus 43210.

Modification of the type II calmodulin-dependent protein kinase by 5'-p-fluorosulfonylbenzoyl adenosine (FSBA) resulted in a time-dependent inactivation of the enzyme. The reaction followed pseudo-first-order kinetics and showed a nonlinear dependence on reagent concentration. The rate of inactivation was sensitive to Mg2+- and calmodulin-induced conformational changes on the enzyme. However, the enhancing effects of these ligands were not additive; indeed, the kinetic parameters of the Mg2+-stimulated inactivation reaction with FSBA (Kinact = 2.4 mM; kappa max = 0.12 min-1) were almost unaffected by the simultaneous addition of calmodulin (Kinact = 1.5 mM; kappa max = 0.086 min-1). Protection from inactivation by FSBA was provided by Mg2+-ADP which is consistent with modification of the catalytic site. An analysis of the protective effect of Mg2+-ADP in the absence (Kd = 590 microM) and presence (Kd = 68 microM) of calmodulin demonstrated that binding of the modulator protein to the enzyme increases the affinity of the protein kinase for nucleotides. Modification by FSBA resulted in labeling of both Tyr and Lys residues but only labeling of Lys was decreased by Mg2+-ADP which is consistent with the hypothesis that a conserved Lys residue is important in nucleotide binding to the protein kinase. However, the kinetic results of the inactivation reaction suggest that this Lys is not involved in mediating the calmodulin-promoted increase in the affinity of the enzyme for Mg2+-nucleotide complexes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D047428 Protein Kinase Inhibitors Agents that inhibit PROTEIN KINASES. Protein Kinase Inhibitor,Inhibitor, Protein Kinase,Inhibitors, Protein Kinase,Kinase Inhibitor, Protein,Kinase Inhibitors, Protein

Related Publications

M M King, and D J Shell, and A P Kwiatkowski
October 1980, The Journal of biological chemistry,
M M King, and D J Shell, and A P Kwiatkowski
November 1981, The Journal of biological chemistry,
M M King, and D J Shell, and A P Kwiatkowski
December 1987, Biochemistry,
M M King, and D J Shell, and A P Kwiatkowski
November 1981, The Journal of biological chemistry,
M M King, and D J Shell, and A P Kwiatkowski
February 1981, The Journal of biological chemistry,
M M King, and D J Shell, and A P Kwiatkowski
December 1988, The Journal of biological chemistry,
M M King, and D J Shell, and A P Kwiatkowski
April 1978, Biochemical and biophysical research communications,
M M King, and D J Shell, and A P Kwiatkowski
October 1975, The Journal of biological chemistry,
Copied contents to your clipboard!