Identification of REO1, a gene involved in negative regulation of COX5b and ANB1 in aerobically grown Saccharomyces cerevisiae. 1988

C E Trueblood, and R O Poyton
Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309.

In Saccharomyces cerevisiae, the COX5a and COX5b genes constitute a small gene family that encodes two forms of cytochrome c oxidase subunit V, Va and Vb, either of which can provide a function essential for cytochrome c oxidase activity and respiration. In aerobically grown wild-type yeast cells, Va is the predominant form of subunit V. The COX5b gene alone does not produce enough Vb to support a respiration rate sufficient to allow growth on nonfermentable carbon sources. By selecting for mutations that increase the respiratory capacity of a strain deleted for COX5a, we have identified a gene that is involved in negative regulation of COX5b expression under aerobic growth conditions. Each of four independently isolated reo1 mutations are shown to be recessive, unlinked to COX5b, but dependent on COX5b for phenotypic expression. The mutations define a single complementation and linkage group: designated as REO1 for regulator of expression of oxidase. reo1 mutations increase expression of COX5b in aerobically grown cells, but not in anaerobically grown cells, where expression is already elevated. These mutations have no effect on COX5a, the other member of this small gene family which is positively regulated by heme and oxygen. The REO1 gene does play a role in repression of ANB1, a gene that is normally repressed under aerobic but not anaerobic conditions. Neither rox1 or rox3 mutations, which have previously been shown to increase ANB1 expression, are in the same complementation group as reo1 mutations.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005808 Genes, Recessive Genes that influence the PHENOTYPE only in the homozygous state. Conditions, Recessive Genetic,Genetic Conditions, Recessive,Recessive Genetic Conditions,Condition, Recessive Genetic,Gene, Recessive,Genetic Condition, Recessive,Recessive Gene,Recessive Genes,Recessive Genetic Condition
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests

Related Publications

C E Trueblood, and R O Poyton
December 1986, Molecular and cellular biology,
C E Trueblood, and R O Poyton
January 2009, Journal of proteomics,
C E Trueblood, and R O Poyton
April 1990, Molecular and cellular biology,
C E Trueblood, and R O Poyton
June 1987, Molecular and cellular biology,
Copied contents to your clipboard!