Amplification of KP elements associated with the repression of hybrid dysgenesis in Drosophila melanogaster. 1988

M S Jackson, and D M Black, and G A Dover
Department of Genetics, University of Cambridge, England.

Mobile P elements in Drosophila melanogaster cause hybrid dysgenesis if their mobility is not repressed. One type of repression, termed P cytotype, is a complex interaction between chromosomes carrying P elements and cytoplasm and is transmitted through the cytoplasm only of females. Another type of repression is found in worldwide M' strains that contain approximately 30 copies per individual of one particular P element deletion-derivative termed the KP element. This repression is transmitted equally through both sexes. In the present study we show that biparentally transmitted repression increases in magnitude together with a rapid increase in KP copy-number in genotypes starting with one or a few KP elements and no other deletion-derivatives. Such correlated increases in repression and KP number per genome occur only in the presence of complete P elements, supporting the interpretation that they are probably a consequence of the selective advantage enjoyed by flies carrying the highest numbers of KP elements. Analysis of Q strains also reveals the presence of qualitative differences in the way the repression of dysgenesis is transmitted. In general, Q strains not containing KP elements have the P cytotype mode of repression, whereas Q strains with KP elements transmit repression through both sexes. This difference among Q strains further supports the existence of at least two types of repression of P-induced hybrid dysgenesis in natural populations of D. melanogaster.

UI MeSH Term Description Entries
D008297 Male Males
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005111 Extrachromosomal Inheritance Vertical transmission of hereditary characters by DNA from cytoplasmic organelles such as MITOCHONDRIA; CHLOROPLASTS; and PLASTIDS, or from PLASMIDS or viral episomal DNA. Cytoplasmic Inheritance,Extranuclear Inheritance,Inheritance, Cytoplasmic,Inheritance, Extrachromosomal,Inheritance, Extranuclear
D005260 Female Females
D005298 Fertility The capacity to conceive or to induce conception. It may refer to either the male or female. Fecundity,Below Replacement Fertility,Differential Fertility,Fecundability,Fertility Determinants,Fertility Incentives,Fertility Preferences,Fertility, Below Replacement,Marital Fertility,Natural Fertility,Subfecundity,World Fertility Survey,Determinant, Fertility,Determinants, Fertility,Fertility Determinant,Fertility Incentive,Fertility Preference,Fertility Survey, World,Fertility Surveys, World,Fertility, Differential,Fertility, Marital,Fertility, Natural,Preference, Fertility,Preferences, Fertility,Survey, World Fertility,Surveys, World Fertility,World Fertility Surveys
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene

Related Publications

M S Jackson, and D M Black, and G A Dover
March 1990, Genetics,
M S Jackson, and D M Black, and G A Dover
January 1988, Oxford surveys on eukaryotic genes,
M S Jackson, and D M Black, and G A Dover
February 1980, Science (New York, N.Y.),
M S Jackson, and D M Black, and G A Dover
March 1990, Genetics,
M S Jackson, and D M Black, and G A Dover
December 1987, Genetics,
M S Jackson, and D M Black, and G A Dover
December 1988, Molecular & general genetics : MGG,
Copied contents to your clipboard!