Arf GTPase interplay with Rho GTPases in regulation of the actin cytoskeleton. 2019

Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
Department of Pathology, University of Cambridge , Cambridge , UK.

The Arf and Rho subfamilies of small GTPases are nucleotide-dependent molecular switches that act as master regulators of vesicular trafficking and the actin cytoskeleton organization. Small GTPases control cell processes with high fidelity by acting through distinct repertoires of binding partners called effectors. While we understand a great deal about how these GTPases act individually, relatively little is known about how they cooperate, especially in the control of effectors. This review highlights how Arf GTPases collaborate with Rac1 to regulate actin cytoskeleton dynamics at the membrane via recruiting and activating the Wave Regulatory Complex (WRC), a Rho effector that underpins lamellipodia formation and macropinocytosis. This provides insight into Arf regulation of the actin cytoskeleton, while putting the spotlight on small GTPase cooperation with emerging evidence of its importance in fundamental cell biology and interactions with pathogenic bacteria.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012475 Salmonella A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that utilizes citrate as a sole carbon source. It is pathogenic for humans, causing enteric fevers, gastroenteritis, and bacteremia. Food poisoning is the most common clinical manifestation. Organisms within this genus are separated on the basis of antigenic characteristics, sugar fermentation patterns, and bacteriophage susceptibility.
D051300 Wiskott-Aldrich Syndrome Protein Family A family of microfilament proteins whose name derives from the fact that mutations in members of this protein family have been associated with WISKOTT-ALDRICH SYNDROME. They are involved in ACTIN polymerization and contain a polyproline-rich region that binds to PROFILIN, and a verprolin homology domain that binds G-ACTIN. WAS Protein Family,WASP-Family Verprolin Homologous Proteins,WAVE Proteins,WAS Protein Family, Member 1,WAS Protein Family, Member 2,WAS Protein Family, Member 3,WASF1 Protein,WASF2 Protein,WASF3 Protein,WASP Protein Family,WAVE1 Protein,WAVE2 Protein,WAVE3 Protein,Wiskott-Aldrich Syndrome Protein Family, Member 1,Wiskott-Aldrich Syndrome Protein Family, Member 2,Wiskott-Aldrich Syndrome Protein Family, Member 3,WASP Family Verprolin Homologous Proteins,Wiskott Aldrich Syndrome Protein Family,Wiskott Aldrich Syndrome Protein Family, Member 1,Wiskott Aldrich Syndrome Protein Family, Member 2,Wiskott Aldrich Syndrome Protein Family, Member 3
D020727 ADP-Ribosylation Factors MONOMERIC GTP-BINDING PROTEINS that were initially recognized as allosteric activators of the MONO(ADP-RIBOSE) TRANSFERASE of the CHOLERA TOXIN catalytic subunit. They are involved in vesicle trafficking and activation of PHOSPHOLIPASE D. This enzyme was formerly listed as EC 3.6.1.47 ADP-Ribosylation Factor,ARF Protein Cofactor,ADP Ribosylation Factor,ADP Ribosylation Factors
D020741 rho GTP-Binding Proteins A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47. rho G-Proteins,rho GTPase,rho GTPases,rho Small GTP-Binding Proteins,P21 (rho)Protein,rho GTP-Binding Protein,rho Protein P21,G-Proteins, rho,GTP-Binding Protein, rho,GTP-Binding Proteins, rho,GTPase, rho,GTPases, rho,P21, rho Protein,rho G Proteins,rho GTP Binding Protein,rho GTP Binding Proteins,rho Small GTP Binding Proteins

Related Publications

Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
April 2008, Trends in cell biology,
Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
January 1998, Science (New York, N.Y.),
Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
April 2000, Proceedings of the National Academy of Sciences of the United States of America,
Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
March 2011, Journal of cell science,
Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
January 1999, Experimental cell research,
Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
August 2000, The Journal of cell biology,
Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
August 2004, Experimental & molecular medicine,
Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
January 1996, Cancer surveys,
Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
February 1997, Current opinion in cell biology,
Vikash Singh, and Anthony C Davidson, and Peter J Hume, and Daniel Humphreys, and Vassilis Koronakis
January 2005, Current topics in microbiology and immunology,
Copied contents to your clipboard!