Percutaneous electrical nerve field stimulation modulates central pain pathways and attenuates post-inflammatory visceral and somatic hyperalgesia in rats. 2017

Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
Department of Pediatrics, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, United States.

A non-invasive, auricular percutaneous electrical nerve field stimulation (PENFS) has been suggested to modulate central pain pathways. We investigated the effects of BRIDGE® device on the responses of amygdala and lumbar spinal neurons and the development of post-colitis hyperalgesia. Male Sprague-Dawley rats received intracolonic trinitrobenzene sulfonic acid (TNBS) and PENFS on the same day. Control rats had sham devices. The visceromotor response (VMR) to colon distension and paw withdrawal threshold (PWT) was recorded after 7days. A different group of rats had VMR and PWT at baseline, after TNBS and following PENFS. Extracellular recordings were made from neurons in central nucleus of the amygdala (CeA) or lumbar spinal cord. Baseline firing and responses to compression of the paw were recorded before and after PENFS. Sham-treated rats exhibited a much higher VMR (>30mmHg) and lower PWT compared to PENFS-treated rats (p<0.05). PENFS decreased the VMR to colon distension and increased the PWT compared to pre-stimulation (p<0.05). PENFS resulted in a 57% decrease in spontaneous firing of the CeA neurons (0.59±0.16 vs control: 1.71±0.32imp/s). Similarly, the response to somatic stimulation was decreased by 56% (3.6±0.52 vs control: 1.71±0.32 imps/s, p<0.05). Spinal neurons showed a 47% decrease in mean spontaneous firing (4.05±0.65 vs control: 7.7±0.87imp/s) and response to somatic stimulation (7.62±1.7 vs control: 14.8±2.28imp/s, p<0.05). PENFS attenuated baseline firing of CeA and spinal neurons which may account for the modulation of pain responses in this model of post-inflammatory visceral and somatic hyperalgesia.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004561 Transcutaneous Electric Nerve Stimulation The use of specifically placed small electrodes to deliver electrical impulses across the SKIN to relieve PAIN. It is used less frequently to produce ANESTHESIA. Analgesic Cutaneous Electrostimulation,Electric Stimulation, Transcutaneous,Electroanalgesia,Percutaneous Electric Nerve Stimulation,TENS,Transdermal Electrostimulation,Electrical Stimulation, Transcutaneous,Percutaneous Electrical Nerve Stimulation,Percutaneous Electrical Neuromodulation,Percutaneous Neuromodulation Therapy,Transcutaneous Electrical Nerve Stimulation,Transcutaneous Nerve Stimulation,Cutaneous Electrostimulation, Analgesic,Electrical Neuromodulation, Percutaneous,Electrical Neuromodulations, Percutaneous,Electroanalgesias,Electrostimulation, Analgesic Cutaneous,Electrostimulation, Transdermal,Nerve Stimulation, Transcutaneous,Neuromodulation Therapy, Percutaneous,Neuromodulation, Percutaneous Electrical,Neuromodulations, Percutaneous Electrical,Percutaneous Electrical Neuromodulations,Percutaneous Neuromodulation Therapies,Stimulation, Transcutaneous Electric,Stimulation, Transcutaneous Nerve,Therapy, Percutaneous Neuromodulation,Transcutaneous Electric Stimulation,Transcutaneous Electrical Stimulation
D006930 Hyperalgesia An increased sensation of pain or discomfort produced by minimally noxious stimuli due to damage to soft tissue containing NOCICEPTORS or injury to a peripheral nerve. Hyperalgesia, Tactile,Hyperalgesia, Thermal,Hyperalgia,Hyperalgia, Mechanical,Hyperalgia, Primary,Hyperalgia, Secondary,Allodynia,Allodynia, Mechanical,Allodynia, Tactile,Allodynia, Thermal,Hyperalgesia, Mechanical,Hyperalgesia, Primary,Hyperalgesia, Secondary,Hyperalgesic Sensations,Mechanical Allodynia,Mechanical Hyperalgesia,Tactile Allodynia,Thermal Allodynia,Allodynias,Hyperalgesias,Hyperalgesias, Thermal,Hyperalgesic Sensation,Mechanical Hyperalgia,Mechanical Hyperalgias,Primary Hyperalgia,Primary Hyperalgias,Secondary Hyperalgia,Secondary Hyperalgias,Sensation, Hyperalgesic,Sensations, Hyperalgesic,Thermal Hyperalgesia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D014302 Trinitrobenzenesulfonic Acid A reagent that is used to neutralize peptide terminal amino groups. Picrylsulfonic Acid,Trinitrobenzene Sulfonate,2,4,6-Trinitrobenzene Sulfonate,Trinitrobenzenesulfonic Acid, Sodium Salt,Sulfonate, Trinitrobenzene
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
March 2024, Anaesthesia and intensive care,
Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
November 2013, Pain,
Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
January 2020, Progress in neurological surgery,
Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
April 2004, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
January 1990, European neurology,
Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
January 2013, Behavioural brain research,
Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
May 2018, Journal of ethnopharmacology,
Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
September 2012, Pain management nursing : official journal of the American Society of Pain Management Nurses,
Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
December 2008, Current rheumatology reports,
Reji Babygirija, and Manu Sood, and Pradeep Kannampalli, and Jyoti N Sengupta, and Adrian Miranda
June 2013, BMC complementary and alternative medicine,
Copied contents to your clipboard!