Enhanced Sampling of Phase Transitions in Coarse-Grained Lipid Bilayers. 2017

David Stelter, and Tom Keyes
Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States.

Freezing and melting of dipalmitoylphosphatidylcholine (DPPC) bilayers are simulated in both the explicit (Wet) and implicit solvent (Dry) coarse-grained MARTINI force fields with enhanced sampling, via the isobaric, molecular dynamics version of the generalized replica exchange method (gREM). Phase transitions are described with the entropic viewpoint, based upon the statistical temperature as a function of enthalpy, TS(H) = 1/(dS(H)/dH), where S is the configurational entropy. Bilayer thickness, area per lipid, and the second-rank order parameter (P2) are calculated vs temperature in the transition range. In a 32-lipid Wet MARTINI system, transitions in the lipid and water subsystems are strongly coupled, giving rise to considerable structure in TS(H) and the need to specify the state of the water when reporting a lipid transition temperature. For gel lipid + liquid water → fluid lipid + liquid water, we find 292.4 K. The small system is influenced by finite-size effects, but it is argued that the entropic approach is well suited to revealing them, which will be particularly relevant for studies of finite nanosystems where there is no thermodynamic limit. In a 390-lipid Dry MARTINI system, two-dimensional analogues of the topographies of coexisting states ("subphases") seen in pure fluids are found. They are not seen in the 32-lipid Wet or Dry system, but the Dry lipids show a new type of state with gel in one leaflet and tilted gel in the other. Dry bilayer transition temperatures are 333.3 K (390 lipids) and 338 K (32 lipids), indicating that the 32-lipid system is not too small for a qualitative study of the transition. Physical arguments are given for Dry lipid system size dependence and for the difference between Wet and Dry systems.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl
D044367 Phase Transition A change of a substance from one form or state to another. Gas-Liquid-Solid Phase Transitions,Sol-Gel Phase Transition,Gas Liquid Solid Phase Transitions,Gas-Liquid-Solid Phase Transition,Phase Transition, Gas-Liquid-Solid,Phase Transition, Sol-Gel,Phase Transitions,Phase Transitions, Gas-Liquid-Solid,Phase Transitions, Sol-Gel,Sol Gel Phase Transition,Sol-Gel Phase Transitions,Transition, Gas-Liquid-Solid Phase,Transition, Sol-Gel Phase,Transitions, Gas-Liquid-Solid Phase,Transitions, Sol-Gel Phase

Related Publications

David Stelter, and Tom Keyes
December 2004, The Journal of chemical physics,
David Stelter, and Tom Keyes
February 2012, The journal of physical chemistry. B,
David Stelter, and Tom Keyes
May 2014, Journal of chemical theory and computation,
David Stelter, and Tom Keyes
November 2021, Physical review. E,
David Stelter, and Tom Keyes
May 2005, The Journal of chemical physics,
David Stelter, and Tom Keyes
October 2005, Physical review. E, Statistical, nonlinear, and soft matter physics,
David Stelter, and Tom Keyes
November 2008, The Journal of chemical physics,
David Stelter, and Tom Keyes
June 2005, Chemistry and physics of lipids,
David Stelter, and Tom Keyes
December 2018, The Journal of chemical physics,
Copied contents to your clipboard!