Multiple integration sites for the lactose transposon Tn 951 on plasmid RP 1 and establishment of a coordinate system for Tn 951. 1979

G Cornelis, and D Ghosal, and H Saedler

Various molecules generated by transposition of the lactose transposon Tn 951 from plasmid pGC1 to plasmid RP1 were examined by DNA heteroduplex and restriction endonuclease analysis. Tn 951 was found to transpose to at least eight different sites on RP 1 in both possible orientations. A coordinate system for the lactose transposon Tn 951 is constructed.

UI MeSH Term Description Entries
D007786 Lactose Factors Plasmids which determine the ability of a bacterium to ferment lactose. Lac Factors,Factors, Lac,Factors, Lactose
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular

Related Publications

G Cornelis, and D Ghosal, and H Saedler
January 1994, FEMS microbiology letters,
G Cornelis, and D Ghosal, and H Saedler
June 2002, Wei sheng wu xue bao = Acta microbiologica Sinica,
G Cornelis, and D Ghosal, and H Saedler
January 1991, FEMS microbiology letters,
G Cornelis, and D Ghosal, and H Saedler
December 1981, Gene,
G Cornelis, and D Ghosal, and H Saedler
January 1980, Genetika,
G Cornelis, and D Ghosal, and H Saedler
August 2004, Molecular therapy : the journal of the American Society of Gene Therapy,
G Cornelis, and D Ghosal, and H Saedler
March 2010, Journal of theoretical biology,
Copied contents to your clipboard!