Demonstration of adrenergic and dopaminergic receptors in cultured sympathetic neurons--their coupling to cAMP but not to the transmitter release process. 1988

A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
Department of Pharmacology, State University of New York, Brooklyn 11203.

Experiments were carried out on cultured sympathetic neurons of the chick embryo; first, to demonstrate the presence of adrenergic and dopaminergic receptors, and then to see if these receptors are involved in regulation of transmitter release. We show that alpha 2-agonists, norepinephrine, epinephrine and clonidine, had no effect on neuronal cyclic 3',5'-adenosine monophosphate content. Forskolin enhanced neuronal cyclic 3',5'-adenosine monophosphate from a control value of about 20 pmoles/mg protein to 150 pmoles/mg protein. In the presence of alpha 2-agonists and forskolin the cyclic 3,5'-adenosine monophosphate content increased between 340 and 430 pmoles/mg protein. The alpha 1-agonist, phenylephrine, had no such effect. The facilitatory effect of alpha 2-agonist on forskolin-stimulated cyclic 3',5'-adenosine monophosphate production was blocked by the alpha 2-antagonist, yohimbine, but not the alpha 1-agonist, prazosin. Dopamine did not affect neuronal cyclic 3',5'-adenosine monophosphate content, but forskolin-stimulated increase in cyclic 3',5'-adenosine monophosphate was further facilitated by dopamine, and this effect was blocked by haloperidol. Activation of neuronal alpha 2-receptors by norepinephrine, epinephrine and clonidine did not interfere with electrically induced release of tritium from [3H]-norepinephrine-loaded sympathetic neurons. However, if sympathetic neurons were co-cultured with heart cells, clonidine, norepinephrine and epinephrine markedly inhibited the stimulation-induced release. Yohimbine or phentolamine partially reversed the inhibitory effects of alpha 2-agonists. alpha 2-Agonists and -antagonists also modified stimulation-induced release of tritium from [3H]norepinephrine-loaded hearts of the chick embryo.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
February 1997, Progress in neurobiology,
A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
November 2011, British journal of pharmacology,
A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
April 1983, Federation proceedings,
A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
January 1989, Annals of the New York Academy of Sciences,
A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
November 1997, The Journal of physiology,
A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
April 2009, British journal of pharmacology,
A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
January 1986, Progress in brain research,
A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
October 1984, Proceedings of the National Academy of Sciences of the United States of America,
A R Wakade, and T D Wakade, and S V Bhave, and R K Malhotra
January 2001, Neuroscience,
Copied contents to your clipboard!