Assessing immune competence in pigs by immunization with tetanus toxoid. 2018

U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
1Institute of Behavioural Physiology,Leibniz Institute for Farm Animal Biology,D-18196 Dummerstorf,Germany.

Immune competence can be tested by challenging organisms with a set of infectious agents. However, disease control requirements impose restrictions on the infliction of infections upon domestic pigs. Alternatively, vaccinations induce detectable immune responses that reflect immune competence. Here, we tested this approach with tetanus toxoid (TT) in young domestic pigs. To optimize the vaccination protocol, we immunized the pigs with a commercial TT vaccine at the age of 21 or 35 days. Booster immunizations were performed either 14 or 21 days later. TT-specific antibodies in plasma as well as lymphoproliferative responses were determined both 7 and 14 days after booster immunization using ELISA and lymphocyte transformation tests, respectively. In addition, general IgG and IgM plasma concentrations and mitogen-induced proliferation were measured. The highest TT-specific antibody responses were detected when blood samples were collected 1 week after a booster immunization conducted 21 days after primary immunization. The pigs' age at primary immunization did not have a significant influence on TT-specific antibody responses. Similarly, the TT-specific proliferative responses were highest when blood samples were collected 1 week after booster immunization, while age and time of primary and booster immunization were irrelevant in our setup. While general IgG and IgM plasma levels were highly age dependent, there were no significant age effects for TT-specific immune responses. In addition, mitogen-induced proliferation was independent of immunization as well as blood sampling protocols. In summary, our model of TT vaccination provides an interesting approach for the assessment of immune competence in young pigs. The detected vaccination effects were not biased by age, even though our data were acquired from immune systems that were under development during our tests.

UI MeSH Term Description Entries
D007114 Immunization Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow). Immunologic Stimulation,Immunostimulation,Sensitization, Immunologic,Variolation,Immunologic Sensitization,Immunological Stimulation,Sensitization, Immunological,Stimulation, Immunologic,Immunizations,Immunological Sensitization,Immunological Sensitizations,Immunological Stimulations,Sensitizations, Immunological,Stimulation, Immunological,Stimulations, Immunological,Variolations
D007117 Immunization, Secondary Any immunization following a primary immunization and involving exposure to the same or a closely related antigen. Immunization, Booster,Revaccination,Secondary Immunization,Booster Immunization,Booster Immunizations,Immunizations, Booster,Immunizations, Secondary,Revaccinations,Secondary Immunizations
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000907 Antibodies, Bacterial Immunoglobulins produced in a response to BACTERIAL ANTIGENS. Bacterial Antibodies
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
February 1966, Journal of bacteriology,
U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
August 1956, Minerva medica,
U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
June 1962, JAMA,
U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
April 1939, American journal of public health and the nation's health,
U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
February 1993, The Journal of the Association of Physicians of India,
U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
April 1993, The American Journal of dermatopathology,
U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
January 1964, The Ohio State medical journal,
U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
September 1995, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics,
U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
November 1969, Journal of immunology (Baltimore, Md. : 1950),
U Gimsa, and A Tuchscherer, and J Gimsa, and M Tuchscherer
May 1940, The Yale journal of biology and medicine,
Copied contents to your clipboard!