Induction of sister chromatid exchanges by inhibitors of topoisomerases. 1986

M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
Johns Hopkins Oncology Center, Radiobiology Laboratory, Baltimore, Maryland 21205.

To investigate the role of topoisomerases in the production of sister chromatid exchanges, the effects of inhibitors of type I and II topoisomerases on baseline and mutagen-induced sister chromatid exchanges were compared. V79 cells were treated with VM-26 and m-AMSA, known inhibitors of type II topoisomerase, or with camptothecin, the only known inhibitor of type I topoisomerase. We observed that inhibitors of both type I and II topoisomerases induced high levels of sister chromatid exchanges at 10(-6) M, and that the dose-response curves of these drugs were very similar. A clear heterogeneity in the distribution patterns of exchanges induced by inhibitors of topoisomerases was observed. We believe that this heterogeneity in response to these compounds is due to variation in sensitivity within the cell cycle. We also studied interactions of these agents with mitomycin-C and with PUVA (8-methoxypsoralen + UVA), both cross-linking agents and potent sister chromatid exchange inducers, and with x-rays, an agent that induces high levels of DNA strand breaks. No significant change in exchange levels was observed in interactions between topoisomerase inhibition and the levels induced by the agents studied. We conclude that double-strand break prevalence, known to be increased through inhibition of type II topoisomerase, is not the primary mechanism for induction of sister chromatid exchanges. We further conclude that acute inhibition of type I and type II topoisomerases does not influence substantially the induction of exchanges by other agents.

UI MeSH Term Description Entries
D011034 Podophyllotoxin A lignan (LIGNANS) found in PODOPHYLLIN resin from the roots of PODOPHYLLUM plants. It is a potent spindle poison, toxic if taken internally, and has been used as a cathartic. It is very irritating to skin and mucous membranes, has keratolytic actions, has been used to treat warts and keratoses, and may have antineoplastic properties, as do some of its congeners and derivatives. Epipodophyllotoxin,CPH86,Condyline,Condylox,Podocon-25,Podofilm,Podofilox,Podophyllotoxin, (5R-(5 alpha,5a alpha,8a alpha,9 alpha))-Isomer,Podophyllotoxin, (5R-(5 alpha,5a alpha,8a alpha,9 beta))-Isomer,Podophyllotoxin, (5R-(5 alpha,5a alpha,8a beta,9 alpha))-Isomer,Podophyllotoxin, (5R-(5 alpha,5a beta,8a alpha,9 beta))-Isomer,Wartec,Warticon
D002166 Camptothecin An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. Camptothecine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000677 Amsacrine An aminoacridine derivative that intercalates into DNA and is used as an antineoplastic agent. m-AMSA,AMSA,AMSA P-D,Amsacrina,Amsidine,Amsidyl,Cain's Acridine,NSC-141549,NSC-156303,NSC-249992,SN-11841,SN11841,meta-AMSA,AMSA P D,AMSA PD,Cain Acridine,Cains Acridine,NSC 141549,NSC 156303,NSC 249992,NSC141549,NSC156303,NSC249992,SN 11841,meta AMSA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012854 Sister Chromatid Exchange An exchange of segments between the sister chromatids of a chromosome, either between the sister chromatids of a meiotic tetrad or between the sister chromatids of a duplicated somatic chromosome. Its frequency is increased by ultraviolet and ionizing radiation and other mutagenic agents and is particularly high in BLOOM SYNDROME. Chromatid Exchange, Sister,Chromatid Exchanges, Sister,Exchange, Sister Chromatid,Exchanges, Sister Chromatid,Sister Chromatid Exchanges

Related Publications

M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
July 1996, Mutation research,
M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
September 1985, Mutation research,
M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
May 1978, British journal of industrial medicine,
M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
January 1982, Medicina,
M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
January 1980, Advances in human genetics,
M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
May 1979, Genetics,
M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
January 1990, Teratogenesis, carcinogenesis, and mutagenesis,
M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
January 1998, Teratogenesis, carcinogenesis, and mutagenesis,
M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
February 1979, Mutation research,
M Lim, and L F Liu, and D Jacobson-Kram, and J R Williams
April 1978, Cancer research,
Copied contents to your clipboard!