Drug recognition of DNA. Proposal for GC minor groove specific ligands: vinylexins. 1988

K Zakrzewska, and M Randrianarivelo, and B Pullman
Institut de Biologie Physico-Chimique Laboratoire de Biochimie Théorique associé au C.N.R.S, Paris, France.

In a previous publication in this journal we have proposed an isolexin-like prototype of a GC minor groove specific ligand. The present paper is devoted to refinements of this prototype (increase in specificity and in DNA binding energy). It is shown that only a very limited improvement can be obtained by increasing the proton accepting capabilities of the heteroaromatic ring systems of the prototype, although these rings interact directly with the proton donating NH2 group of guanine. On the other hand a significant increase both in GC specificity and in DNA binding energy is obtained by replacing the NH linkers of the isolexin by C = C double bonds (yielding what we term "vinylexins"). Specificity is still largely conserved and the DNA binding energy is significantly increased in monocationic vinylexins, which should thus be efficient GC minor groove specific ligands. The outstanding importance for the GC specificity of the C = C linkers is evidenced by the disappearance of this specificity when these linkers are replaced by peptide bonds (peptilexins). On the other hand vinylexins with proton donating heteroaromatic rings are, as expected, AT specific. The vinylexin family may thus represent universal minor groove binding agents susceptible to bind to any given base pair sequence of DNA, following the positioning of their proton donor and proton acceptor rings. This study confirms the insufficiency of purely geometrical and/or hydrogen bonding considerations for the correct estimation of GC versus AT specificity of groove binding ligands. These can only be accounted for by taking into consideration the overall electronic properties of the interacting species and explicitly calculating the energies of complex formation including all the relevant contributions.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D003596 Cytosine A pyrimidine base that is a fundamental unit of nucleic acids.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006147 Guanine
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

K Zakrzewska, and M Randrianarivelo, and B Pullman
April 1988, Journal of biomolecular structure & dynamics,
K Zakrzewska, and M Randrianarivelo, and B Pullman
February 2019, Biophysical chemistry,
K Zakrzewska, and M Randrianarivelo, and B Pullman
April 2023, Current protocols,
K Zakrzewska, and M Randrianarivelo, and B Pullman
January 2000, Annual review of biophysics and biomolecular structure,
K Zakrzewska, and M Randrianarivelo, and B Pullman
July 2006, Journal of the American Chemical Society,
K Zakrzewska, and M Randrianarivelo, and B Pullman
June 1999, Anti-cancer drug design,
K Zakrzewska, and M Randrianarivelo, and B Pullman
January 1998, Nature,
K Zakrzewska, and M Randrianarivelo, and B Pullman
December 2012, Current protocols in nucleic acid chemistry,
K Zakrzewska, and M Randrianarivelo, and B Pullman
July 2000, Current drug targets,
Copied contents to your clipboard!