Epithelial-to-mesenchymal transition in tumor progression. 2017

Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
Laboratory of Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Avda de Córdoba s/n, 28041, Madrid, Spain.

The epithelial-to-mesenchymal transition (EMT) is a biological process in which a non-motile epithelial cell changes to a mesenchymal state with invasive capacities. However, the EMT program is involved in both physiological and pathological processes. Cancer-associated EMT is known to contribute to increase invasiveness and metastasis, resistance to therapies, and generation of cell populations with stem cell-like characteristics and therefore is deeply involved in tumor progression. This process is finely orchestrated by multiple signaling pathways and regulatory transcriptional networks. The hallmark of EMT is the loss of epithelial surface markers, mainly E-cadherin, and the acquisition of mesenchymal phenotype. These events can be mediated by EMT transcription factors which can cooperate with several enzymes to repress the E-cadherin expression and regulate EMT at the epigenetic and post-translational level. A growing body of evidence indicates that cancer cells can reside in various phenotypic states along the EMT spectrum, where cells can jointly retain epithelial traits with mesenchymal ones. This type of phenotypic plasticity endows cancer cells with tumor-initiating potential. The identification of the signaling pathways and modulators that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.

UI MeSH Term Description Entries
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014411 Neoplastic Stem Cells Highly proliferative, self-renewing, and colony-forming stem cells which give rise to NEOPLASMS. Cancer Stem Cells,Colony-Forming Units, Neoplastic,Stem Cells, Neoplastic,Tumor Stem Cells,Neoplastic Colony-Forming Units,Tumor Initiating Cells,Cancer Stem Cell,Cell, Cancer Stem,Cell, Neoplastic Stem,Cell, Tumor Initiating,Cell, Tumor Stem,Cells, Cancer Stem,Cells, Neoplastic Stem,Cells, Tumor Initiating,Cells, Tumor Stem,Colony Forming Units, Neoplastic,Colony-Forming Unit, Neoplastic,Initiating Cell, Tumor,Initiating Cells, Tumor,Neoplastic Colony Forming Units,Neoplastic Colony-Forming Unit,Neoplastic Stem Cell,Stem Cell, Cancer,Stem Cell, Neoplastic,Stem Cell, Tumor,Stem Cells, Cancer,Stem Cells, Tumor,Tumor Initiating Cell,Tumor Stem Cell,Unit, Neoplastic Colony-Forming,Units, Neoplastic Colony-Forming
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation
D015820 Cadherins Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body. Cadherin,E-Cadherins,Epithelial-Cadherin,Liver Cell Adhesion Molecules,N-Cadherins,Neural Cadherin,P-Cadherins,Uvomorulin,Cadherin-1,Cadherin-2,Cadherin-3,E-Cadherin,Epithelial-Cadherins,Liver Cell Adhesion Molecule,N-Cadherin,Neural Cadherins,P-Cadherin,Placental Cadherins,Cadherin 1,Cadherin 2,Cadherin 3,Cadherin, Neural,Cadherins, Neural,Cadherins, Placental,E Cadherin,E Cadherins,Epithelial Cadherin,Epithelial Cadherins,N Cadherin,N Cadherins,P Cadherin,P Cadherins
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D058750 Epithelial-Mesenchymal Transition Phenotypic changes of EPITHELIAL CELLS to MESENCHYME type, which increase cell mobility critical in many developmental processes such as NEURAL TUBE development. NEOPLASM METASTASIS and DISEASE PROGRESSION may also induce this transition. Epithelial-Mesenchymal Transformation,Epithelial Mesenchymal Transformation,Epithelial Mesenchymal Transition,Transformation, Epithelial-Mesenchymal,Transition, Epithelial-Mesenchymal
D019008 Drug Resistance, Neoplasm Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures. Antibiotic Resistance, Neoplasm,Antineoplastic Drug Resistance,Drug Resistance, Antineoplastic,Antineoplastic Agent Resistance,Neoplasm Drug Resistance,Resistance, Antineoplastic Agent,Resistance, Antineoplastic Drug

Related Publications

Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
December 2009, Bulletin de l'Academie nationale de medecine,
Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
December 2018, Biochemistry. Biokhimiia,
Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
December 2018, Journal of clinical medicine,
Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
August 2016, Journal of immunology (Baltimore, Md. : 1950),
Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
January 2022, The International journal of developmental biology,
Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
October 2005, Current opinion in cell biology,
Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
January 2010, Bulletin du cancer,
Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
July 2017, Human pathology,
Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
September 2013, Translational andrology and urology,
Elena Prieto-García, and C Vanesa Díaz-García, and Inmaculada García-Ruiz, and M Teresa Agulló-Ortuño
January 2022, Cancer treatment and research communications,
Copied contents to your clipboard!