Conformationally restricted analogs of somatostatin with high mu-opiate receptor specificity. 1985

J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura

A series of cyclic, conformationally restricted analogs of somatostatin have been prepared and tested for their ability to inhibit the binding of [3H]naloxone and [D-Ala2, D-Leu5] [3H]enkephalin to rat brain membranes. The most potent analog, D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 where Pen is penicillamine in [D-Phe5, Cys6, Tyr7, D-Trp8, Pen11]somatostatin-(5-12)-octapeptide amide, exhibited high affinity for mu-opiate receptors (IC50 value of [3H]naloxone = 3.5 nM), being 7800 times more potent than somatostatin. The cyclic octapeptide also displayed high mu-opiate receptor selectivity with an IC50 [( D-Ala2,D-Leu5]enkephalin)/IC50 (naloxone) ratio of 271. The high affinity and selectivity of the somatostatin analog for mu-opiate receptors may be of use in examining the physiological role(s) of the mu-opiate receptor.

UI MeSH Term Description Entries
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004743 Enkephalin, Leucine One of the endogenous pentapeptides with morphine-like activity. It differs from MET-ENKEPHALIN in the LEUCINE at position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Leucine Enkephalin,5-Leucine Enkephalin,Leu(5)-Enkephalin,Leu-Enkephalin,5 Leucine Enkephalin,Enkephalin, 5-Leucine,Leu Enkephalin
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
June 1978, Proceedings of the National Academy of Sciences of the United States of America,
J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
January 1987, Peptides,
J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
November 1985, FEBS letters,
J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
June 2004, Bioorganic & medicinal chemistry letters,
J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
January 1999, Annals of the New York Academy of Sciences,
J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
February 2008, Journal of molecular signaling,
J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
March 1991, International journal of peptide and protein research,
J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
August 1999, Bioorganic & medicinal chemistry letters,
J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
June 2004, Medical science monitor : international medical journal of experimental and clinical research,
J T Pelton, and K Gulya, and V J Hruby, and S P Duckles, and H I Yamamura
October 1990, International journal of peptide and protein research,
Copied contents to your clipboard!