Slow inward current and cardiac arrhythmias. 1985

R F Gilmour, and D P Zipes

The slow inward current contributes to the normal electrical and contractile activity of several cardiac and vascular tissues and also may mediate the electrical abnormalities responsible for certain cardiac arrhythmias. The slow inward current differs from the fast inward sodium current in that it is carried primarily by calcium rather than sodium, requires a more positive level of membrane potential to be activated, has slower activation and inactivation kinetics, is responsible for normal depolarization in sinus and atrioventricular (AV) nodal cells and is blocked by a rather specific group of agents that includes verapamil, diltiazem and nifedipine. Recent data suggest that slow-channel openings occur in bursts, separated by silent periods, and that less negative membrane potentials and beta-adrenergic stimulation increase the probability that the channels will open. Inactivation of the channels is associated with a lower probability of channel opening. Slow-channel blocking agents such as verapamil, diltiazem and nifedipine appear to bind to activated, rather than rested, slow channels. Therefore, their effects are more prominent at faster pacing rates and at less negative membrane potentials. Clinically occurring cardiac arrhythmias dependent on the slow inward current include primarily sinus and AV nodal reentry and reciprocating tachycardia in the Wolff-Parkinson-White syndrome when one of the pathways incorporates the AV node. Damaged atrial, ventricular and specialized tissue also can generate slow response-mediated reentry or forms of automaticity that may be clinically important under certain circumstances.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R F Gilmour, and D P Zipes
May 1977, Journal of molecular and cellular cardiology,
R F Gilmour, and D P Zipes
March 1975, The Journal of general physiology,
R F Gilmour, and D P Zipes
January 1976, Recent advances in studies on cardiac structure and metabolism,
R F Gilmour, and D P Zipes
January 1971, Pflugers Archiv : European journal of physiology,
R F Gilmour, and D P Zipes
November 1993, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
R F Gilmour, and D P Zipes
January 1972, Pflugers Archiv : European journal of physiology,
R F Gilmour, and D P Zipes
March 2017, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology,
R F Gilmour, and D P Zipes
March 1989, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
R F Gilmour, and D P Zipes
December 1976, The Journal of physiology,
Copied contents to your clipboard!