The crystal structure of human DEAH-box RNA helicase 15 reveals a domain organization of the mammalian DEAH/RHA family. 2017

Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

DEAH-box RNA helicase 15 (DHX15) plays important roles in RNA metabolism, including in splicing and in ribosome biogenesis. In addition, mammalian DHX15 also mediates the innate immune sensing of viral RNA. However, structural information on this protein is not available, although the structure of the fungal orthologue of this protein, Prp43, has been elucidated. Here, the crystal structure of the ADP-bound form of human DHX15 is reported at a resolution of 2.0 Å. This is the first structure to be revealed of a member of the mammalian DEAH-box RNA helicase (DEAH/RHA) family in a nearly complete form, including the catalytic core consisting of the two N-terminal RecA domains and the C-terminal regulatory domains (CTD). The ADP-bound form of DHX15 displayed a compact structure, in which the RecA domains made extensive contacts with the CTD. Notably, a potential RNA-binding site was found on the surface of a RecA domain with positive electrostatic potential. Almost all structural features were conserved between the fungal Prp43 and the human DHX15, suggesting that they share a fundamentally common mechanism of action and providing a better understanding of the specific mammalian functions of DHX15.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072756 Protein Conformation, alpha-Helical A secondary structure of proteins that is a right-handed helix or coil, where each amino (N-H) group of the peptide backbone contributes a hydrogen bond to the carbonyl(C alpha-Helical Conformation, Protein,alpha-Helical Protein Conformation,alpha-Helical Structures,alpha-Helices,alpha-Helix,Conformation, Protein alpha-Helical,Conformation, alpha-Helical Protein,Conformations, Protein alpha-Helical,Conformations, alpha-Helical Protein,Protein Conformation, alpha Helical,Protein Conformations, alpha-Helical,alpha Helical Conformation, Protein,alpha Helical Protein Conformation,alpha Helical Structures,alpha Helices,alpha Helix,alpha-Helical Conformations, Protein,alpha-Helical Protein Conformations,alpha-Helical Structure
D000072757 Protein Conformation, beta-Strand A secondary structure of proteins where the amino (N-H) groups of a polypeptide backbone, three to ten amino acids in length, establish hydrogen bonds with the carbonyl (C Protein Conformation, beta-Sheet,beta-Pleated Sheet,beta-Sheet,beta-Sheets,beta-Strand,beta-Stranded Structures,beta-Strands,Conformation, beta-Sheet Protein,Conformation, beta-Strand Protein,Conformations, beta-Sheet Protein,Conformations, beta-Strand Protein,Protein Conformation, beta Sheet,Protein Conformation, beta Strand,Protein Conformations, beta-Sheet,Protein Conformations, beta-Strand,Sheet, beta-Pleated,Sheets, beta-Pleated,beta Pleated Sheet,beta Sheet,beta Sheets,beta Strand,beta Stranded Structures,beta Strands,beta-Pleated Sheets,beta-Sheet Protein Conformation,beta-Sheet Protein Conformations,beta-Strand Protein Conformation,beta-Strand Protein Conformations,beta-Stranded Structure
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
September 2018, Biochemical and biophysical research communications,
Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
November 1997, Biochemical and biophysical research communications,
Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
March 2020, Journal of molecular biology,
Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
January 2016, RNA & disease (Houston, Tex.),
Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
July 2021, Proceedings of the National Academy of Sciences of the United States of America,
Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
July 2018, Acta crystallographica. Section D, Structural biology,
Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
January 2017, eLife,
Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
November 1992, Nucleic acids research,
Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
April 2023, Communications biology,
Karin Murakami, and Kenji Nakano, and Toshiyuki Shimizu, and Umeharu Ohto
August 2019, Nucleic acids research,
Copied contents to your clipboard!