Acetylcholine responses of identified neurons in Helix pomatia--II. Pharmacological properties of acetylcholine responses. 1985

O W Witte, and E J Speckmann, and J Walden

A pharmacological separation of depolarizing and hyperpolarizing mechanisms involved in the generation of acetylcholine (ACh) depolarizations was attempted in the identified neurons B1 and B3 of the buccal ganglia of Helix pomatia. The selectivity of the drugs employed was assayed in non-identified buccal neurons in which ACh increased a hyperpolarizing Cl- conductance. Voltage clamp techniques were used. Under control conditions the depolarizing ACh currents increased non-linearly with more negative membrane potentials. The hyperpolarizing ACh currents showed a linear potential dependence. The buffer substance Tris (5 mmol/l) depressed the depolarizing ACh currents. The effect was accentuated with more negative membrane potentials. Tris failed to affect hyperpolarizing ACh responses. HEPES (5 mmol/l) did not change depolarizing or hyperpolarizing ACh responses. d-Tubocurarine (0.02-0.2 mmol/l), hexamethonium (0.5-5.0 mmol/l) and atropine (0.1 mmol/l) blocked the depolarizing and hyperpolarizing ACh responses. Arecoline (0.1 mmol/l) had neither an agonistic nor an antagonistic effect on the identified and on the non-identified neurons. It displayed an anticholinesterase activity. Anthracene-9-carbonic acid (0.5 mmol/l) depressed selectively the hyperpolarizing ACh responses. In the neurons B1 and B3 no pharmacologically separable hyperpolarizing ACh responses were detected to be superimposed on the ACh depolarizations.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006372 Helix, Snails A genus of chiefly Eurasian and African land snails including the principal edible snails as well as several pests of cultivated plants. Helix (Snails),Snails Helix
D006584 Hexamethonium Compounds Compounds containing the hexamethylenebis(trimethylammonium) cation. Members of this group frequently act as antihypertensive agents and selective ganglionic blocking agents. Compounds, Hexamethonium
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000873 Anthracenes A group of compounds with three aromatic rings joined in linear arrangement.
D001115 Arecoline An alkaloid obtained from the betel nut (Areca catechu), fruit of a palm tree. It is an agonist at both muscarinic and nicotinic acetylcholine receptors. It is used in the form of various salts as a ganglionic stimulant, a parasympathomimetic, and a vermifuge, especially in veterinary practice. It has been used as a euphoriant in the Pacific Islands. Methylarecaidin,Arecaline,Arecholin,Arecholine,Arecolin

Related Publications

O W Witte, and E J Speckmann, and J Walden
January 1971, Neirofiziologiia = Neurophysiology,
O W Witte, and E J Speckmann, and J Walden
March 1973, The International journal of neuroscience,
O W Witte, and E J Speckmann, and J Walden
January 1986, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
O W Witte, and E J Speckmann, and J Walden
April 1983, Biulleten' eksperimental'noi biologii i meditsiny,
O W Witte, and E J Speckmann, and J Walden
January 1982, Neuroscience and behavioral physiology,
O W Witte, and E J Speckmann, and J Walden
January 1984, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
O W Witte, and E J Speckmann, and J Walden
January 1984, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
O W Witte, and E J Speckmann, and J Walden
January 1983, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
O W Witte, and E J Speckmann, and J Walden
July 1997, General pharmacology,
Copied contents to your clipboard!