T cell regulation of interferon-alpha/beta (IFN-alpha/beta) production by alloantigen-stimulated bone marrow cells. 1985

V E Reyes, and K D Klimpel, and G R Klimpel

We have previously reported that mouse bone marrow cells produce high levels of interferon-alpha/beta (IFN-alpha/beta) after 5 to 6 days of in vitro culture with irradiated allogenic spleen cells. The current study was initiated to determine whether or not T cells are important for alloantigen-induced IFN-alpha/beta production by mouse bone marrow cells. Bone marrow cells and spleen cells were obtained from C57BL/6 mice. These cells were treated with different monoclonal antisera and complement, and then were cultured 5 to 6 days with irradiated DBA spleen cells. The results from these experiments indicated that optimal IFN-alpha/beta production by alloantigen-stimulated bone marrow cells required Lyt-1+2+ T cells. In addition, when bone marrow cells obtained from nu/nu B10 mice were cultured with alloantigen, only low levels of IFN were produced when compared with IFN production by bone marrow cells obtained from normal littermate B10 mice. The addition of nylon wool-enriched splenic T cells to cultures containing bone marrow cells and alloantigen resulted in an augmentation of IFN-alpha/beta production by three-fold to fivefold. Furthermore, bone marrow cells obtained from alloantigen-immunized mice produced much higher levels of IFN-alpha/beta and in a shorter period of time (2 to 3 days) when compared with bone marrow cells obtained from control or non-immunized mice. Cyclosporin A (CsA) has been shown to inhibit predominantly T cell-dependent responses. The effect of CsA on IFN production by alloantigen-stimulated bone marrow and spleen cells was investigated. The addition of CsA at concentrations as low as 0.1 micrograms/ml inhibited not only IFN-gamma production by alloantigen-stimulated spleen cells, but also IFN-alpha/beta production by alloantigen-stimulated bone marrow cells. In contrast, IFN-alpha/beta production by Newcastle disease virus-infected spleen cells, bone marrow cells, or L cells was not inhibited by the addition of CsA (1 microgram/ml). Thus, the ability of bone marrow cells to produce high levels of IFN-alpha/beta after in vitro culture with alloantigen is dependent upon T cells resident in the bone marrow. IFN-alpha/beta production by alloantigen-stimulated bone marrow cells may play a major role in the pathogenesis associated with graft-vs-host disease and in T cell regulation of hematopoiesis.

UI MeSH Term Description Entries
D007156 Immunologic Memory The altered state of immunologic responsiveness resulting from initial contact with antigen, which enables the individual to produce antibodies more rapidly and in greater quantity in response to secondary antigenic stimulus. Immune Memory,Immunological Memory,Memory, Immunologic,Immune Memories,Immunologic Memories,Immunological Memories,Memory, Immune,Memory, Immunological
D007370 Interferon Type I Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA). Interferons Type I,Type I Interferon,Type I Interferons,Interferon, Type I,Interferons, Type I
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone

Related Publications

V E Reyes, and K D Klimpel, and G R Klimpel
August 1984, Cellular immunology,
V E Reyes, and K D Klimpel, and G R Klimpel
May 1983, Journal of immunology (Baltimore, Md. : 1950),
V E Reyes, and K D Klimpel, and G R Klimpel
November 2004, Leukemia research,
V E Reyes, and K D Klimpel, and G R Klimpel
September 1997, Scandinavian journal of immunology,
V E Reyes, and K D Klimpel, and G R Klimpel
April 1984, European journal of immunology,
V E Reyes, and K D Klimpel, and G R Klimpel
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
V E Reyes, and K D Klimpel, and G R Klimpel
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!