Adrenomedullary function in the neonatal rat: responses to acute hypoxia. 1985

F J Seidler, and T A Slotkin

The mechanism of release of catecholamines from the adrenal medulla of neonatal rats was examined, together with the role of these amines in the ability of the organism to withstand acute O2 deprivation. Splanchnic innervation of the rat adrenal is non-functional until the end of the first postnatal week. Nevertheless, hypoxia caused depletion of adrenal catecholamines in 1-day-old rats as well as in 8-day-old animals. Pre-treatment with cholinergic receptor blocking agents did not prevent the catecholamine response at 1 day but did in older animals; these results indicate that the depletion mechanism is not neurogenic in 1-day-old animals but is neurogenic in 8-day-old animals. The proportions of noradrenaline and adrenaline released by hypoxic stress also differed at the two ages, with preferential release of adrenaline by the neurogenic mechanism but not by the non-neurogenic one. The ontogenetic replacement of non-neurogenic adrenomedullary responses by the neurogenic mechanism was directly related to the onset of splanchnic nerve function. Treatments which accelerated the development of neuronal connexions (neonatal hyperthyroidism, maternal stress) caused premature loss of the non-neurogenic response. Prior to the development of sympathetic nerve function, adrenal catecholamines plays a predominant role in enabling the neonate to survive hypoxia. Interference with the release of adrenal amines invariably increased mortality during hypoxia. In contrast, interference with sympathetic neural release of catecholamines did not affect the ability of 1-day-old rats to withstand hypoxia, indicating that survival during low PO2 conditions is not dependent on the sympathetic innervation at that stage of development. After functional development of the sympathetic nerves and disappearance of non-neurogenic adrenomedullary responses, the neonatal rats became partially dependent upon catecholamines derived from sympathetic terminals; administration of bretylium at 8 days significantly compromised survival during hypoxia. Interference with adrenergic receptor function also interfered with the ability of neonatal rats to withstand low PO2. At 1 day of age, either phenoxybenzamine or ICI-118551, but not atenolol, shortened the survival time during hypoxia. At 8 days, only phenoxybenzamine did so.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002714 Chlorisondamine A nicotinic antagonist used primarily as a ganglionic blocker in animal research. It has been used as an antihypertensive agent but has been supplanted by more specific drugs in most clinical applications. Chlorisondamine Chloride,Chlorisondamine Dichloride,Ecolid,Chloride, Chlorisondamine,Dichloride, Chlorisondamine
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005260 Female Females
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal

Related Publications

F J Seidler, and T A Slotkin
May 1983, The Journal of clinical investigation,
F J Seidler, and T A Slotkin
March 2011, American journal of physiology. Regulatory, integrative and comparative physiology,
F J Seidler, and T A Slotkin
March 2012, American journal of physiology. Regulatory, integrative and comparative physiology,
F J Seidler, and T A Slotkin
October 1983, Biochemical pharmacology,
F J Seidler, and T A Slotkin
October 2008, American journal of physiology. Regulatory, integrative and comparative physiology,
F J Seidler, and T A Slotkin
February 2006, Experimental neurology,
F J Seidler, and T A Slotkin
June 2004, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!