Metabolic adaptations to exercise: a review of potential beta-adrenoceptor antagonist effects. 1985

J Karlsson

Human skeletal muscle contains 2 muscle fiber types: slow twitch (type I) and fast twitch (type II). They have different profiles including their biochemical, metabolic, O2 diffusion, microcirculatory and neuromotor characteristics. The slow twitch fiber represents endurance, high combustive potential and recruitment during moderate activity; in contrast, the fast twitch represents explosiveness, force, high capacity for phosphate splitting and lactate formation, but is more fatiguable. A muscle rich in slow twitch fibers is confined to low peripheral resistance at rest and during exercise, higher exercise leg blood flow and higher maximal oxygen uptake (VO2 max). During graded exercise lactate has been shown to be a good marker for the metabolic and circulatory characteristics of the contracting muscle and the exercise intensity (W) eliciting a blood lactate concentration of 4 mmol/liter-1 [(WOBLA) from onset of blood lactate accumulation] integrated for peripheral metabolic, neuromotor and central circulatory potentials both in health and disease. It is well known that a blood lactate level greater than 4 mmol/liter-1 represents a major increase in sympathetic tone and is incompatible with endurance or prolonged exercise. With prolonged exercise and sympathetic regulation both circulation and metabolism adapt. Adipose tissue is stimulated and fatty acids are released. Muscle tissue lipoprotein lipase activity is enhanced; that is, there is increased utilization of blood triglycerides for local lipolysis in the capillary bed of the contracting muscle. Both mechanisms will increase fatty acid availability and induce a "glycogen-sparing effect" resulting in a reduced respiratory exchange ratio. Studies have shown that both the magnitude of the initial glycogen stores and these adaptive responses will determine performance time. With age, changes take place in heart rate regulation, neuromotor control and muscle fibers. Thus VO2 max is decreased, but partly compensated for by a fast motor unit and fiber loss leading to a muscle more rich in slow twitch fibers--an "endurance training-like effect." Relative endurance is also increased with age; however, lactate metabolism is still a critical feature. The OBLA concept describes capacity for both occupational and leisure-time physical activity.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions

Related Publications

J Karlsson
September 1984, Arquivos brasileiros de cardiologia,
J Karlsson
May 1982, British journal of clinical pharmacology,
J Karlsson
April 2001, Revue medicale de Liege,
J Karlsson
September 1981, The New England journal of medicine,
J Karlsson
January 1982, Acta medica Scandinavica. Supplementum,
J Karlsson
November 1983, The Journal of physiology,
J Karlsson
October 1984, Arquivos brasileiros de cardiologia,
J Karlsson
January 1984, British journal of clinical pharmacology,
Copied contents to your clipboard!