The effect of pH and/or calcium-enriched freshwater on gill Ca2+-ATPase activity and osmotic water inflow in rainbow trout (Salmo gairdneri). 1985

D B Parker, and B A McKeown, and J S Macdonald

Rainbow trout (Salmo gairdneri) were exposed to pH 5.0-5.1, 6.6 and/or calcium-enriched freshwater for 14 days. Hematocrit, gill Ca2+-ATPase enzyme activities, gill osmotic water inflow, plasma calcium and osmolarity were measured. No significant changes in plasma calcium ion levels were found. The typical increase in hematocrit usually associated with exposure of fish to acidified water was not found in the present study and is discussed. Plasma osmolarity decreased in fish exposed to calcium-enriched freshwater (60 mg Ca2+ X 1(-1) ) in comparison to fish exposed to control freshwater conditions (2 mg Ca2+ X 1(1) ), irrespective of the pH level. Gill Ca2+-ATPase enzyme activities were measured for both low affinity (3 mM Ca2+) and high affinity (100 microM) activity. Exposure of rainbow trout to low pH (pH 5.0-5.1) did not affect the specific activity of Ca2+-ATPase enzyme. However, low affinity Ca2+-ATPase activity in fish exposed to calcium-enriched freshwater did show a significant reduction. The increase in gill osmotic water permeability in fish exposed to calcium-enriched freshwater is interpreted as a result of the increase in osmolarity of the ambient media.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D009995 Osmosis Tendency of fluids (e.g., water) to move from the less concentrated to the more concentrated side of a semipermeable membrane. Osmoses
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005618 Fresh Water Water containing no significant amounts of salts, such as water from RIVERS and LAKES. Freshwater,Fresh Waters,Freshwaters,Water, Fresh,Waters, Fresh
D005880 Gills Paired respiratory organs of fishes and some amphibians that are analogous to lungs. They are richly supplied with blood vessels by which oxygen and carbon dioxide are exchanged directly with the environment. Gill
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

D B Parker, and B A McKeown, and J S Macdonald
September 1972, Biochimica et biophysica acta,
D B Parker, and B A McKeown, and J S Macdonald
April 1974, Biochimica et biophysica acta,
D B Parker, and B A McKeown, and J S Macdonald
April 1989, The American journal of anatomy,
D B Parker, and B A McKeown, and J S Macdonald
January 1986, Comparative biochemistry and physiology. A, Comparative physiology,
D B Parker, and B A McKeown, and J S Macdonald
March 1991, Fish physiology and biochemistry,
D B Parker, and B A McKeown, and J S Macdonald
August 1974, Comparative biochemistry and physiology. B, Comparative biochemistry,
D B Parker, and B A McKeown, and J S Macdonald
January 1983, Comparative biochemistry and physiology. A, Comparative physiology,
D B Parker, and B A McKeown, and J S Macdonald
March 1974, Journal of morphology,
D B Parker, and B A McKeown, and J S Macdonald
January 1985, Experimental biology,
D B Parker, and B A McKeown, and J S Macdonald
August 1974, The Journal of general physiology,
Copied contents to your clipboard!